ENSO Bred Vectors in Coupled Ocean–Atmosphere General Circulation Models
The breeding method has been implemented in the NASA Seasonal-to-Interannual Prediction Project (NSIPP) coupled general circulation model (CGCM) with the ultimate goal of improving operational seasonal to interannual climate predictions through ensemble forecasting and data assimilation. This is the...
Gespeichert in:
Veröffentlicht in: | Journal of climate 2006-04, Vol.19 (8), p.1422-1436 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The breeding method has been implemented in the NASA Seasonal-to-Interannual Prediction Project (NSIPP) coupled general circulation model (CGCM) with the ultimate goal of improving operational seasonal to interannual climate predictions through ensemble forecasting and data assimilation. This is the first attempt to isolate the evolving ENSO instability and its corresponding global atmospheric response in a fully coupled ocean–atmosphere GCM. The results herein show that the growth rate of the coupled bred vectors (BVs) is sensitive to the ENSO phases of the evolving background flow and peaks about 3 months before an ENSO event. The structure of the dominant growing BV modes also evolves with the background ENSO and exhibits a larger amplitude in the eastern tropical Pacific, reflecting the natural dynamical sensitivity associated with the shallow thermocline at the eastern boundary. The key features of coupled bred vectors of the NSIPP CGCM are reproduced when using the NCEP CGCM, an independently developed coupled general circulation model. |
---|---|
ISSN: | 0894-8755 1520-0442 |
DOI: | 10.1175/jcli3696.1 |