Sirt7 Contributes to Myocardial Tissue Repair by Maintaining Transforming Growth Factor-β Signaling Pathway

BACKGROUND—Sirt7, 1 of the 7 members of the mammalian sirtuin family, promotes oncogenic transformation. Tumor growth and metastasis require fibrotic and angiogenic responses. Here, we investigated the role of Sirt7 in cardiovascular tissue repair process. METHODS AND RESULTS—In wild-type mice, Sirt...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Circulation (New York, N.Y.) N.Y.), 2015-09, Vol.132 (12), p.1081-1093
Hauptverfasser: Araki, Satoshi, Izumiya, Yasuhiro, Rokutanda, Taku, Ianni, Alessandro, Hanatani, Shinsuke, Kimura, Yuichi, Onoue, Yoshiro, Senokuchi, Takafumi, Yoshizawa, Tatsuya, Yasuda, Osamu, Koitabashi, Norimichi, Kurabayashi, Masahiko, Braun, Thomas, Bober, Eva, Yamagata, Kazuya, Ogawa, Hisao
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1093
container_issue 12
container_start_page 1081
container_title Circulation (New York, N.Y.)
container_volume 132
creator Araki, Satoshi
Izumiya, Yasuhiro
Rokutanda, Taku
Ianni, Alessandro
Hanatani, Shinsuke
Kimura, Yuichi
Onoue, Yoshiro
Senokuchi, Takafumi
Yoshizawa, Tatsuya
Yasuda, Osamu
Koitabashi, Norimichi
Kurabayashi, Masahiko
Braun, Thomas
Bober, Eva
Yamagata, Kazuya
Ogawa, Hisao
description BACKGROUND—Sirt7, 1 of the 7 members of the mammalian sirtuin family, promotes oncogenic transformation. Tumor growth and metastasis require fibrotic and angiogenic responses. Here, we investigated the role of Sirt7 in cardiovascular tissue repair process. METHODS AND RESULTS—In wild-type mice, Sirt7 expression increased in response to acute cardiovascular injury, including myocardial infarction and hind-limb ischemia, particularly at the active wound healing site. Compared with wild-type mice, homozygous Sirt7-deficient (Sirt7) mice showed susceptibility to cardiac rupture after myocardial infarction, delayed blood flow recovery after hind-limb ischemia, and impaired wound healing after skin injury. Histological analysis showed reduced fibrosis, fibroblast differentiation, and inflammatory cell infiltration in the border zone of infarction in Sirt7 mice. In vitro, Sirt7 mouse–derived or Sirt7 siRNA–treated cardiac fibroblasts showed reduced transforming growth factor-β signal activation and low expression levels of fibrosis-related genes compared with wild-type mice–derived or control siRNA–treated cells. These changes were accompanied by reduction in transforming growth factor receptor I protein. Loss of Sirt7 activated autophagy in cardiac fibroblasts. Transforming growth factor-β receptor I downregulation induced by loss of Sirt7 was blocked by autophagy inhibitor, and interaction of Sirt7 with protein interacting with protein kinase-Cα was involved in this process. CONCLUSION—Sirt7 maintains transforming growth factor receptor I by modulating autophagy and is involved in the tissue repair process.
doi_str_mv 10.1161/CIRCULATIONAHA.114.014821
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1715915447</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1715915447</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4694-6a00886db5ed4d333826a86c162576d880345f3359ce6585618226dc15b76aba3</originalsourceid><addsrcrecordid>eNpVUctu2zAQJIoWjZP2Fwr21osSvkUdDSEPA3ZdJM6ZWEl0zIQWHZKC4d_Kh_SbKsNpgR4Wi5md2QVmEfpOySWlil7Vs_v6cT5dzZY_p3fTkROXhArN6Ac0oZKJQkhefUQTQkhVlJyxM3Se0vMIFS_lZ3TGFCNMUzJB_sHFXOI69Dm6Zsg24Rzw4hBaiJ0Dj1cupcHie7sDF3FzwAtwfR7L9U94FaFP6xC3R3Abwz5v8A20OcTi9xt-cE89-OPoF-TNHg5f0Kc1-GS_vvcL9HhzvarvivnydlZP50UrVCUKBYRorbpG2k50nHPNFGjVUsVkqTqtCRdyzbmsWquklopqxlTXUtmUChrgF-jHae8uhtfBpmy2LrXWe-htGJKhJZUVlUKUo7Q6SdsYUop2bXbRbSEeDCXmGLb5P-yRE-YU9uj99n5maLa2--f8m-4oECfBPvhsY3rxw95Gs7Hg88aM7yCc0LJghEpSMUaKIyX4H5D4jGw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1715915447</pqid></control><display><type>article</type><title>Sirt7 Contributes to Myocardial Tissue Repair by Maintaining Transforming Growth Factor-β Signaling Pathway</title><source>MEDLINE</source><source>American Heart Association Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Journals@Ovid Complete</source><creator>Araki, Satoshi ; Izumiya, Yasuhiro ; Rokutanda, Taku ; Ianni, Alessandro ; Hanatani, Shinsuke ; Kimura, Yuichi ; Onoue, Yoshiro ; Senokuchi, Takafumi ; Yoshizawa, Tatsuya ; Yasuda, Osamu ; Koitabashi, Norimichi ; Kurabayashi, Masahiko ; Braun, Thomas ; Bober, Eva ; Yamagata, Kazuya ; Ogawa, Hisao</creator><creatorcontrib>Araki, Satoshi ; Izumiya, Yasuhiro ; Rokutanda, Taku ; Ianni, Alessandro ; Hanatani, Shinsuke ; Kimura, Yuichi ; Onoue, Yoshiro ; Senokuchi, Takafumi ; Yoshizawa, Tatsuya ; Yasuda, Osamu ; Koitabashi, Norimichi ; Kurabayashi, Masahiko ; Braun, Thomas ; Bober, Eva ; Yamagata, Kazuya ; Ogawa, Hisao</creatorcontrib><description>BACKGROUND—Sirt7, 1 of the 7 members of the mammalian sirtuin family, promotes oncogenic transformation. Tumor growth and metastasis require fibrotic and angiogenic responses. Here, we investigated the role of Sirt7 in cardiovascular tissue repair process. METHODS AND RESULTS—In wild-type mice, Sirt7 expression increased in response to acute cardiovascular injury, including myocardial infarction and hind-limb ischemia, particularly at the active wound healing site. Compared with wild-type mice, homozygous Sirt7-deficient (Sirt7) mice showed susceptibility to cardiac rupture after myocardial infarction, delayed blood flow recovery after hind-limb ischemia, and impaired wound healing after skin injury. Histological analysis showed reduced fibrosis, fibroblast differentiation, and inflammatory cell infiltration in the border zone of infarction in Sirt7 mice. In vitro, Sirt7 mouse–derived or Sirt7 siRNA–treated cardiac fibroblasts showed reduced transforming growth factor-β signal activation and low expression levels of fibrosis-related genes compared with wild-type mice–derived or control siRNA–treated cells. These changes were accompanied by reduction in transforming growth factor receptor I protein. Loss of Sirt7 activated autophagy in cardiac fibroblasts. Transforming growth factor-β receptor I downregulation induced by loss of Sirt7 was blocked by autophagy inhibitor, and interaction of Sirt7 with protein interacting with protein kinase-Cα was involved in this process. CONCLUSION—Sirt7 maintains transforming growth factor receptor I by modulating autophagy and is involved in the tissue repair process.</description><identifier>ISSN: 0009-7322</identifier><identifier>EISSN: 1524-4539</identifier><identifier>DOI: 10.1161/CIRCULATIONAHA.114.014821</identifier><identifier>PMID: 26202810</identifier><language>eng</language><publisher>United States: by the American College of Cardiology Foundation and the American Heart Association, Inc</publisher><subject>Animals ; Autophagy - drug effects ; Disease Models, Animal ; Fibroblasts - drug effects ; Fibroblasts - pathology ; Heart - physiology ; Hindlimb - blood supply ; In Vitro Techniques ; Ischemia - physiopathology ; Male ; Mice ; Mice, Inbred C57BL ; Mice, Knockout ; Myocardial Infarction - physiopathology ; Neovascularization, Physiologic - physiology ; Regeneration - physiology ; RNA, Small Interfering - pharmacology ; Signal Transduction - physiology ; Sirtuins - deficiency ; Sirtuins - genetics ; Sirtuins - physiology ; Transforming Growth Factor beta - physiology ; Wound Healing - physiology</subject><ispartof>Circulation (New York, N.Y.), 2015-09, Vol.132 (12), p.1081-1093</ispartof><rights>2015 by the American College of Cardiology Foundation and the American Heart Association, Inc.</rights><rights>2015 American Heart Association, Inc.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4694-6a00886db5ed4d333826a86c162576d880345f3359ce6585618226dc15b76aba3</citedby><cites>FETCH-LOGICAL-c4694-6a00886db5ed4d333826a86c162576d880345f3359ce6585618226dc15b76aba3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,3687,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/26202810$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Araki, Satoshi</creatorcontrib><creatorcontrib>Izumiya, Yasuhiro</creatorcontrib><creatorcontrib>Rokutanda, Taku</creatorcontrib><creatorcontrib>Ianni, Alessandro</creatorcontrib><creatorcontrib>Hanatani, Shinsuke</creatorcontrib><creatorcontrib>Kimura, Yuichi</creatorcontrib><creatorcontrib>Onoue, Yoshiro</creatorcontrib><creatorcontrib>Senokuchi, Takafumi</creatorcontrib><creatorcontrib>Yoshizawa, Tatsuya</creatorcontrib><creatorcontrib>Yasuda, Osamu</creatorcontrib><creatorcontrib>Koitabashi, Norimichi</creatorcontrib><creatorcontrib>Kurabayashi, Masahiko</creatorcontrib><creatorcontrib>Braun, Thomas</creatorcontrib><creatorcontrib>Bober, Eva</creatorcontrib><creatorcontrib>Yamagata, Kazuya</creatorcontrib><creatorcontrib>Ogawa, Hisao</creatorcontrib><title>Sirt7 Contributes to Myocardial Tissue Repair by Maintaining Transforming Growth Factor-β Signaling Pathway</title><title>Circulation (New York, N.Y.)</title><addtitle>Circulation</addtitle><description>BACKGROUND—Sirt7, 1 of the 7 members of the mammalian sirtuin family, promotes oncogenic transformation. Tumor growth and metastasis require fibrotic and angiogenic responses. Here, we investigated the role of Sirt7 in cardiovascular tissue repair process. METHODS AND RESULTS—In wild-type mice, Sirt7 expression increased in response to acute cardiovascular injury, including myocardial infarction and hind-limb ischemia, particularly at the active wound healing site. Compared with wild-type mice, homozygous Sirt7-deficient (Sirt7) mice showed susceptibility to cardiac rupture after myocardial infarction, delayed blood flow recovery after hind-limb ischemia, and impaired wound healing after skin injury. Histological analysis showed reduced fibrosis, fibroblast differentiation, and inflammatory cell infiltration in the border zone of infarction in Sirt7 mice. In vitro, Sirt7 mouse–derived or Sirt7 siRNA–treated cardiac fibroblasts showed reduced transforming growth factor-β signal activation and low expression levels of fibrosis-related genes compared with wild-type mice–derived or control siRNA–treated cells. These changes were accompanied by reduction in transforming growth factor receptor I protein. Loss of Sirt7 activated autophagy in cardiac fibroblasts. Transforming growth factor-β receptor I downregulation induced by loss of Sirt7 was blocked by autophagy inhibitor, and interaction of Sirt7 with protein interacting with protein kinase-Cα was involved in this process. CONCLUSION—Sirt7 maintains transforming growth factor receptor I by modulating autophagy and is involved in the tissue repair process.</description><subject>Animals</subject><subject>Autophagy - drug effects</subject><subject>Disease Models, Animal</subject><subject>Fibroblasts - drug effects</subject><subject>Fibroblasts - pathology</subject><subject>Heart - physiology</subject><subject>Hindlimb - blood supply</subject><subject>In Vitro Techniques</subject><subject>Ischemia - physiopathology</subject><subject>Male</subject><subject>Mice</subject><subject>Mice, Inbred C57BL</subject><subject>Mice, Knockout</subject><subject>Myocardial Infarction - physiopathology</subject><subject>Neovascularization, Physiologic - physiology</subject><subject>Regeneration - physiology</subject><subject>RNA, Small Interfering - pharmacology</subject><subject>Signal Transduction - physiology</subject><subject>Sirtuins - deficiency</subject><subject>Sirtuins - genetics</subject><subject>Sirtuins - physiology</subject><subject>Transforming Growth Factor beta - physiology</subject><subject>Wound Healing - physiology</subject><issn>0009-7322</issn><issn>1524-4539</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpVUctu2zAQJIoWjZP2Fwr21osSvkUdDSEPA3ZdJM6ZWEl0zIQWHZKC4d_Kh_SbKsNpgR4Wi5md2QVmEfpOySWlil7Vs_v6cT5dzZY_p3fTkROXhArN6Ac0oZKJQkhefUQTQkhVlJyxM3Se0vMIFS_lZ3TGFCNMUzJB_sHFXOI69Dm6Zsg24Rzw4hBaiJ0Dj1cupcHie7sDF3FzwAtwfR7L9U94FaFP6xC3R3Abwz5v8A20OcTi9xt-cE89-OPoF-TNHg5f0Kc1-GS_vvcL9HhzvarvivnydlZP50UrVCUKBYRorbpG2k50nHPNFGjVUsVkqTqtCRdyzbmsWquklopqxlTXUtmUChrgF-jHae8uhtfBpmy2LrXWe-htGJKhJZUVlUKUo7Q6SdsYUop2bXbRbSEeDCXmGLb5P-yRE-YU9uj99n5maLa2--f8m-4oECfBPvhsY3rxw95Gs7Hg88aM7yCc0LJghEpSMUaKIyX4H5D4jGw</recordid><startdate>20150922</startdate><enddate>20150922</enddate><creator>Araki, Satoshi</creator><creator>Izumiya, Yasuhiro</creator><creator>Rokutanda, Taku</creator><creator>Ianni, Alessandro</creator><creator>Hanatani, Shinsuke</creator><creator>Kimura, Yuichi</creator><creator>Onoue, Yoshiro</creator><creator>Senokuchi, Takafumi</creator><creator>Yoshizawa, Tatsuya</creator><creator>Yasuda, Osamu</creator><creator>Koitabashi, Norimichi</creator><creator>Kurabayashi, Masahiko</creator><creator>Braun, Thomas</creator><creator>Bober, Eva</creator><creator>Yamagata, Kazuya</creator><creator>Ogawa, Hisao</creator><general>by the American College of Cardiology Foundation and the American Heart Association, Inc</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>20150922</creationdate><title>Sirt7 Contributes to Myocardial Tissue Repair by Maintaining Transforming Growth Factor-β Signaling Pathway</title><author>Araki, Satoshi ; Izumiya, Yasuhiro ; Rokutanda, Taku ; Ianni, Alessandro ; Hanatani, Shinsuke ; Kimura, Yuichi ; Onoue, Yoshiro ; Senokuchi, Takafumi ; Yoshizawa, Tatsuya ; Yasuda, Osamu ; Koitabashi, Norimichi ; Kurabayashi, Masahiko ; Braun, Thomas ; Bober, Eva ; Yamagata, Kazuya ; Ogawa, Hisao</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4694-6a00886db5ed4d333826a86c162576d880345f3359ce6585618226dc15b76aba3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Animals</topic><topic>Autophagy - drug effects</topic><topic>Disease Models, Animal</topic><topic>Fibroblasts - drug effects</topic><topic>Fibroblasts - pathology</topic><topic>Heart - physiology</topic><topic>Hindlimb - blood supply</topic><topic>In Vitro Techniques</topic><topic>Ischemia - physiopathology</topic><topic>Male</topic><topic>Mice</topic><topic>Mice, Inbred C57BL</topic><topic>Mice, Knockout</topic><topic>Myocardial Infarction - physiopathology</topic><topic>Neovascularization, Physiologic - physiology</topic><topic>Regeneration - physiology</topic><topic>RNA, Small Interfering - pharmacology</topic><topic>Signal Transduction - physiology</topic><topic>Sirtuins - deficiency</topic><topic>Sirtuins - genetics</topic><topic>Sirtuins - physiology</topic><topic>Transforming Growth Factor beta - physiology</topic><topic>Wound Healing - physiology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Araki, Satoshi</creatorcontrib><creatorcontrib>Izumiya, Yasuhiro</creatorcontrib><creatorcontrib>Rokutanda, Taku</creatorcontrib><creatorcontrib>Ianni, Alessandro</creatorcontrib><creatorcontrib>Hanatani, Shinsuke</creatorcontrib><creatorcontrib>Kimura, Yuichi</creatorcontrib><creatorcontrib>Onoue, Yoshiro</creatorcontrib><creatorcontrib>Senokuchi, Takafumi</creatorcontrib><creatorcontrib>Yoshizawa, Tatsuya</creatorcontrib><creatorcontrib>Yasuda, Osamu</creatorcontrib><creatorcontrib>Koitabashi, Norimichi</creatorcontrib><creatorcontrib>Kurabayashi, Masahiko</creatorcontrib><creatorcontrib>Braun, Thomas</creatorcontrib><creatorcontrib>Bober, Eva</creatorcontrib><creatorcontrib>Yamagata, Kazuya</creatorcontrib><creatorcontrib>Ogawa, Hisao</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Circulation (New York, N.Y.)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Araki, Satoshi</au><au>Izumiya, Yasuhiro</au><au>Rokutanda, Taku</au><au>Ianni, Alessandro</au><au>Hanatani, Shinsuke</au><au>Kimura, Yuichi</au><au>Onoue, Yoshiro</au><au>Senokuchi, Takafumi</au><au>Yoshizawa, Tatsuya</au><au>Yasuda, Osamu</au><au>Koitabashi, Norimichi</au><au>Kurabayashi, Masahiko</au><au>Braun, Thomas</au><au>Bober, Eva</au><au>Yamagata, Kazuya</au><au>Ogawa, Hisao</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Sirt7 Contributes to Myocardial Tissue Repair by Maintaining Transforming Growth Factor-β Signaling Pathway</atitle><jtitle>Circulation (New York, N.Y.)</jtitle><addtitle>Circulation</addtitle><date>2015-09-22</date><risdate>2015</risdate><volume>132</volume><issue>12</issue><spage>1081</spage><epage>1093</epage><pages>1081-1093</pages><issn>0009-7322</issn><eissn>1524-4539</eissn><abstract>BACKGROUND—Sirt7, 1 of the 7 members of the mammalian sirtuin family, promotes oncogenic transformation. Tumor growth and metastasis require fibrotic and angiogenic responses. Here, we investigated the role of Sirt7 in cardiovascular tissue repair process. METHODS AND RESULTS—In wild-type mice, Sirt7 expression increased in response to acute cardiovascular injury, including myocardial infarction and hind-limb ischemia, particularly at the active wound healing site. Compared with wild-type mice, homozygous Sirt7-deficient (Sirt7) mice showed susceptibility to cardiac rupture after myocardial infarction, delayed blood flow recovery after hind-limb ischemia, and impaired wound healing after skin injury. Histological analysis showed reduced fibrosis, fibroblast differentiation, and inflammatory cell infiltration in the border zone of infarction in Sirt7 mice. In vitro, Sirt7 mouse–derived or Sirt7 siRNA–treated cardiac fibroblasts showed reduced transforming growth factor-β signal activation and low expression levels of fibrosis-related genes compared with wild-type mice–derived or control siRNA–treated cells. These changes were accompanied by reduction in transforming growth factor receptor I protein. Loss of Sirt7 activated autophagy in cardiac fibroblasts. Transforming growth factor-β receptor I downregulation induced by loss of Sirt7 was blocked by autophagy inhibitor, and interaction of Sirt7 with protein interacting with protein kinase-Cα was involved in this process. CONCLUSION—Sirt7 maintains transforming growth factor receptor I by modulating autophagy and is involved in the tissue repair process.</abstract><cop>United States</cop><pub>by the American College of Cardiology Foundation and the American Heart Association, Inc</pub><pmid>26202810</pmid><doi>10.1161/CIRCULATIONAHA.114.014821</doi><tpages>13</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0009-7322
ispartof Circulation (New York, N.Y.), 2015-09, Vol.132 (12), p.1081-1093
issn 0009-7322
1524-4539
language eng
recordid cdi_proquest_miscellaneous_1715915447
source MEDLINE; American Heart Association Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Journals@Ovid Complete
subjects Animals
Autophagy - drug effects
Disease Models, Animal
Fibroblasts - drug effects
Fibroblasts - pathology
Heart - physiology
Hindlimb - blood supply
In Vitro Techniques
Ischemia - physiopathology
Male
Mice
Mice, Inbred C57BL
Mice, Knockout
Myocardial Infarction - physiopathology
Neovascularization, Physiologic - physiology
Regeneration - physiology
RNA, Small Interfering - pharmacology
Signal Transduction - physiology
Sirtuins - deficiency
Sirtuins - genetics
Sirtuins - physiology
Transforming Growth Factor beta - physiology
Wound Healing - physiology
title Sirt7 Contributes to Myocardial Tissue Repair by Maintaining Transforming Growth Factor-β Signaling Pathway
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T11%3A47%3A54IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Sirt7%20Contributes%20to%20Myocardial%20Tissue%20Repair%20by%20Maintaining%20Transforming%20Growth%20Factor-%CE%B2%20Signaling%20Pathway&rft.jtitle=Circulation%20(New%20York,%20N.Y.)&rft.au=Araki,%20Satoshi&rft.date=2015-09-22&rft.volume=132&rft.issue=12&rft.spage=1081&rft.epage=1093&rft.pages=1081-1093&rft.issn=0009-7322&rft.eissn=1524-4539&rft_id=info:doi/10.1161/CIRCULATIONAHA.114.014821&rft_dat=%3Cproquest_cross%3E1715915447%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1715915447&rft_id=info:pmid/26202810&rfr_iscdi=true