An Optocatalytic Model for Semiconductor–Catalyst Water-Splitting Photoelectrodes Based on In Situ Optical Measurements on Operational Catalysts

The optical properties of electrocatalysts are important for photoelectrochemical water splitting because colored catalysts on the surface of semiconductor photoelectrodes parasitically absorb photons and lower the system efficiency. We present a model that describes the coupling of colored oxygen e...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The journal of physical chemistry letters 2013-03, Vol.4 (6), p.931-935
Hauptverfasser: Trotochaud, Lena, Mills, Thomas J, Boettcher, Shannon W
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 935
container_issue 6
container_start_page 931
container_title The journal of physical chemistry letters
container_volume 4
creator Trotochaud, Lena
Mills, Thomas J
Boettcher, Shannon W
description The optical properties of electrocatalysts are important for photoelectrochemical water splitting because colored catalysts on the surface of semiconductor photoelectrodes parasitically absorb photons and lower the system efficiency. We present a model that describes the coupling of colored oxygen evolution reaction (OER) electrocatalyst thin films with semiconductor photoelectrodes. We use this model to define an “optocatalytic” efficiency (Φo‑c) based on experimental optical and electrokinetic data collected in basic solution. Because transition-metal oxides, hydroxides, and oxyhydroxides often exhibit electrochromism, in situ spectroelectrochemistry is used to quantify the optical absorption of active NiO x , CoO x , NiCoO x, Ni0.9Fe0.1O x , and IrO x catalyst films at OER potentials. For the highest-activity Ni0.9Fe0.1O x catalyst, Φo‑c is maximized (0.64) for a thickness of ∼0.4 nm (∼2 monolayers). This work quantitatively shows that ultrathin catalyst films are appropriate to optimize the performance of water-splitting photoelectrodes and thus assists in the design and study of efficient photoelectrochemical water-splitting devices.
doi_str_mv 10.1021/jz4002604
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1715660346</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1715660346</sourcerecordid><originalsourceid>FETCH-LOGICAL-a315t-4718ee7a205ec2e62c65de0cb6a27904e250dfc1efb6814458d99c2ac685745a3</originalsourceid><addsrcrecordid>eNptkU1OwzAQhS0EglJYcAHkDRIsArZrO8myVPxJrYpUEMvIdSbgKomD7SzKijPADTkJKQXEgtWM9L55ozeD0AElp5QwerZ44YQwSfgG6tGUJ1FME7H5p99Bu94vCJEpSeJttMMkS-lAJD30NqzxtAlWq6DKZTAaT2wOJS6swzOojLZ13upg3cfr--iL8QE_qAAumjWlCcHUj_j2yQYLJejgumGPz5WHHNsa39R4ZkK72mC0KvEElG8dVFAHv9KnDTgVjK077cfd76GtQpUe9r9rH91fXtyNrqPx9OpmNBxHakBFiHgXDCBWjAjQDCTTUuRA9FwqFqeEAxMkLzSFYi4TyrlI8jTVTGmZiJgLNeij47Vv4-xzCz5klfEaylLVYFuf0ZgKKcmAyw49WaPaWe8dFFnjTKXcMqMkW70g-31Bxx5-27bzCvJf8ufmHXC0BpT22cK2rkvv_zH6BE1AkKI</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1715660346</pqid></control><display><type>article</type><title>An Optocatalytic Model for Semiconductor–Catalyst Water-Splitting Photoelectrodes Based on In Situ Optical Measurements on Operational Catalysts</title><source>American Chemical Society Journals</source><creator>Trotochaud, Lena ; Mills, Thomas J ; Boettcher, Shannon W</creator><creatorcontrib>Trotochaud, Lena ; Mills, Thomas J ; Boettcher, Shannon W</creatorcontrib><description>The optical properties of electrocatalysts are important for photoelectrochemical water splitting because colored catalysts on the surface of semiconductor photoelectrodes parasitically absorb photons and lower the system efficiency. We present a model that describes the coupling of colored oxygen evolution reaction (OER) electrocatalyst thin films with semiconductor photoelectrodes. We use this model to define an “optocatalytic” efficiency (Φo‑c) based on experimental optical and electrokinetic data collected in basic solution. Because transition-metal oxides, hydroxides, and oxyhydroxides often exhibit electrochromism, in situ spectroelectrochemistry is used to quantify the optical absorption of active NiO x , CoO x , NiCoO x, Ni0.9Fe0.1O x , and IrO x catalyst films at OER potentials. For the highest-activity Ni0.9Fe0.1O x catalyst, Φo‑c is maximized (0.64) for a thickness of ∼0.4 nm (∼2 monolayers). This work quantitatively shows that ultrathin catalyst films are appropriate to optimize the performance of water-splitting photoelectrodes and thus assists in the design and study of efficient photoelectrochemical water-splitting devices.</description><identifier>ISSN: 1948-7185</identifier><identifier>EISSN: 1948-7185</identifier><identifier>DOI: 10.1021/jz4002604</identifier><identifier>PMID: 26291358</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>Energy Conversion and Storage; Energy and Charge Transport</subject><ispartof>The journal of physical chemistry letters, 2013-03, Vol.4 (6), p.931-935</ispartof><rights>Copyright © 2013 American Chemical Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a315t-4718ee7a205ec2e62c65de0cb6a27904e250dfc1efb6814458d99c2ac685745a3</citedby><cites>FETCH-LOGICAL-a315t-4718ee7a205ec2e62c65de0cb6a27904e250dfc1efb6814458d99c2ac685745a3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/jz4002604$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/jz4002604$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,780,784,2765,27076,27924,27925,56738,56788</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/26291358$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Trotochaud, Lena</creatorcontrib><creatorcontrib>Mills, Thomas J</creatorcontrib><creatorcontrib>Boettcher, Shannon W</creatorcontrib><title>An Optocatalytic Model for Semiconductor–Catalyst Water-Splitting Photoelectrodes Based on In Situ Optical Measurements on Operational Catalysts</title><title>The journal of physical chemistry letters</title><addtitle>J. Phys. Chem. Lett</addtitle><description>The optical properties of electrocatalysts are important for photoelectrochemical water splitting because colored catalysts on the surface of semiconductor photoelectrodes parasitically absorb photons and lower the system efficiency. We present a model that describes the coupling of colored oxygen evolution reaction (OER) electrocatalyst thin films with semiconductor photoelectrodes. We use this model to define an “optocatalytic” efficiency (Φo‑c) based on experimental optical and electrokinetic data collected in basic solution. Because transition-metal oxides, hydroxides, and oxyhydroxides often exhibit electrochromism, in situ spectroelectrochemistry is used to quantify the optical absorption of active NiO x , CoO x , NiCoO x, Ni0.9Fe0.1O x , and IrO x catalyst films at OER potentials. For the highest-activity Ni0.9Fe0.1O x catalyst, Φo‑c is maximized (0.64) for a thickness of ∼0.4 nm (∼2 monolayers). This work quantitatively shows that ultrathin catalyst films are appropriate to optimize the performance of water-splitting photoelectrodes and thus assists in the design and study of efficient photoelectrochemical water-splitting devices.</description><subject>Energy Conversion and Storage; Energy and Charge Transport</subject><issn>1948-7185</issn><issn>1948-7185</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><recordid>eNptkU1OwzAQhS0EglJYcAHkDRIsArZrO8myVPxJrYpUEMvIdSbgKomD7SzKijPADTkJKQXEgtWM9L55ozeD0AElp5QwerZ44YQwSfgG6tGUJ1FME7H5p99Bu94vCJEpSeJttMMkS-lAJD30NqzxtAlWq6DKZTAaT2wOJS6swzOojLZ13upg3cfr--iL8QE_qAAumjWlCcHUj_j2yQYLJejgumGPz5WHHNsa39R4ZkK72mC0KvEElG8dVFAHv9KnDTgVjK077cfd76GtQpUe9r9rH91fXtyNrqPx9OpmNBxHakBFiHgXDCBWjAjQDCTTUuRA9FwqFqeEAxMkLzSFYi4TyrlI8jTVTGmZiJgLNeij47Vv4-xzCz5klfEaylLVYFuf0ZgKKcmAyw49WaPaWe8dFFnjTKXcMqMkW70g-31Bxx5-27bzCvJf8ufmHXC0BpT22cK2rkvv_zH6BE1AkKI</recordid><startdate>20130321</startdate><enddate>20130321</enddate><creator>Trotochaud, Lena</creator><creator>Mills, Thomas J</creator><creator>Boettcher, Shannon W</creator><general>American Chemical Society</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>20130321</creationdate><title>An Optocatalytic Model for Semiconductor–Catalyst Water-Splitting Photoelectrodes Based on In Situ Optical Measurements on Operational Catalysts</title><author>Trotochaud, Lena ; Mills, Thomas J ; Boettcher, Shannon W</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a315t-4718ee7a205ec2e62c65de0cb6a27904e250dfc1efb6814458d99c2ac685745a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Energy Conversion and Storage; Energy and Charge Transport</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Trotochaud, Lena</creatorcontrib><creatorcontrib>Mills, Thomas J</creatorcontrib><creatorcontrib>Boettcher, Shannon W</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>The journal of physical chemistry letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Trotochaud, Lena</au><au>Mills, Thomas J</au><au>Boettcher, Shannon W</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>An Optocatalytic Model for Semiconductor–Catalyst Water-Splitting Photoelectrodes Based on In Situ Optical Measurements on Operational Catalysts</atitle><jtitle>The journal of physical chemistry letters</jtitle><addtitle>J. Phys. Chem. Lett</addtitle><date>2013-03-21</date><risdate>2013</risdate><volume>4</volume><issue>6</issue><spage>931</spage><epage>935</epage><pages>931-935</pages><issn>1948-7185</issn><eissn>1948-7185</eissn><abstract>The optical properties of electrocatalysts are important for photoelectrochemical water splitting because colored catalysts on the surface of semiconductor photoelectrodes parasitically absorb photons and lower the system efficiency. We present a model that describes the coupling of colored oxygen evolution reaction (OER) electrocatalyst thin films with semiconductor photoelectrodes. We use this model to define an “optocatalytic” efficiency (Φo‑c) based on experimental optical and electrokinetic data collected in basic solution. Because transition-metal oxides, hydroxides, and oxyhydroxides often exhibit electrochromism, in situ spectroelectrochemistry is used to quantify the optical absorption of active NiO x , CoO x , NiCoO x, Ni0.9Fe0.1O x , and IrO x catalyst films at OER potentials. For the highest-activity Ni0.9Fe0.1O x catalyst, Φo‑c is maximized (0.64) for a thickness of ∼0.4 nm (∼2 monolayers). This work quantitatively shows that ultrathin catalyst films are appropriate to optimize the performance of water-splitting photoelectrodes and thus assists in the design and study of efficient photoelectrochemical water-splitting devices.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>26291358</pmid><doi>10.1021/jz4002604</doi><tpages>5</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1948-7185
ispartof The journal of physical chemistry letters, 2013-03, Vol.4 (6), p.931-935
issn 1948-7185
1948-7185
language eng
recordid cdi_proquest_miscellaneous_1715660346
source American Chemical Society Journals
subjects Energy Conversion and Storage
Energy and Charge Transport
title An Optocatalytic Model for Semiconductor–Catalyst Water-Splitting Photoelectrodes Based on In Situ Optical Measurements on Operational Catalysts
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-19T08%3A31%3A02IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=An%20Optocatalytic%20Model%20for%20Semiconductor%E2%80%93Catalyst%20Water-Splitting%20Photoelectrodes%20Based%20on%20In%20Situ%20Optical%20Measurements%20on%20Operational%20Catalysts&rft.jtitle=The%20journal%20of%20physical%20chemistry%20letters&rft.au=Trotochaud,%20Lena&rft.date=2013-03-21&rft.volume=4&rft.issue=6&rft.spage=931&rft.epage=935&rft.pages=931-935&rft.issn=1948-7185&rft.eissn=1948-7185&rft_id=info:doi/10.1021/jz4002604&rft_dat=%3Cproquest_cross%3E1715660346%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1715660346&rft_id=info:pmid/26291358&rfr_iscdi=true