Plant cyanogenesis of Phaseolus lunatus and its relevance for herbivore-plant interaction: the importance of quantitative data
Quantitative experimental results on the antiherbivorous effect of cyanogenesis are rare. In our analyses, we distinguished between the total amount of cyanide-containing compounds stored in a given tissue cyanogenic potential (HCNp) and the capacity for release of HCN per unit time (HCNc) from thes...
Gespeichert in:
Veröffentlicht in: | Journal of chemical ecology 2005-07, Vol.31 (7), p.1445-1473 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1473 |
---|---|
container_issue | 7 |
container_start_page | 1445 |
container_title | Journal of chemical ecology |
container_volume | 31 |
creator | Ballhorn, D.J Lieberei, R Ganzhorn, J.U |
description | Quantitative experimental results on the antiherbivorous effect of cyanogenesis are rare. In our analyses, we distinguished between the total amount of cyanide-containing compounds stored in a given tissue cyanogenic potential (HCNp) and the capacity for release of HCN per unit time (HCNc) from these cyanogenic precursors as a reaction to herbivory. We analyzed the impact of these cyanogenic features on herbivorous insects using different accessions of lima beans (Phaseolus lunatus L.) with different cyanogenic characteristics in their leaves and fourth instars of the generalist herbivore Schistocerca gregaria Forskal (Orthoptera, Acrididae). Young leaves exhibit a higher HCNp and HCNc than mature leaves. This ontogenetic variability of cyanogenesis was valid for all accessions studied. In no-choice bioassays, feeding of S. gregaria was reduced on high cyanogenic lima beans compared with low cyanogenic beans. A HCNp of about 15 micromol cyanide/g leaf (fresh weight) with a corresponding HCNc of about 1 micromol HCN released from leaf material within the first 10 min after complete tissue disintegration appears to be a threshold at which the first repellent effects on S. gregaria were observed. The repellent effect of cyanogenesis increased above these thresholds of HCNp and HCNc. No repellent action of cyanogenesis was observed on plants with lower HCNp and HCNc. These low cyanogenic accessions of P. lunatus were consumed extensively-with dramatic consequences for the herbivore. After consumption, locusts showed severe symptoms of intoxication. Choice assays confirmed the feeding preference of locusts for low over high cyanogenic leaf material of P. lunatus. The bioassays revealed total losses of HCN between 90 and 99% related to the estimated amount of ingested cyanide-containing compounds by the locusts. This general finding was independent of the cyanogenic status (high or low) of the leaf material. |
doi_str_mv | 10.1007/s10886-005-5791-2 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_17152682</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2093703091</sourcerecordid><originalsourceid>FETCH-LOGICAL-c411t-a9cab5e85fb04d9666ce4d2a73cc5188c2c569ede4c5284265221823125b245e3</originalsourceid><addsrcrecordid>eNpd0U2LFDEQBuAgijuu_gAvGgS9taaSTjrjTRa_YMEF3XOoTlfvZOnpzCbpgb34283sDCx4qstTL0W9jL0G8RGE6D5lENaaRgjd6G4NjXzCVqA71YA28JSthFjbRigFZ-xFzrdCCGmsfs7OwEgpO2tW7O_VhHPh_h7neEMz5ZB5HPnVBjPFacl8WmYsdeI88FAyTzTRHmdPfIyJbyj1YR8TNbuHnDAXSuhLiPNnXjbEw3YXU3nwNfZuqSgULGFPfMCCL9mzEadMr07znF1_-_rn4kdz-ev7z4svl41vAUqDa4-9JqvHXrTD2hjjqR0kdsp7DdZ66bVZ00Ct19K20mgpwUoFUvey1aTO2Ydj7i7Fu4VycduQPU31aIpLdtCBrr-RFb77D97GJc31NtcpJUC16oDgiHyKOSca3S6FLaZ7B8IdmnHHZlxtxh2acYedN6fgpd_S8LhxqqKC9yeA2eM0pvq0kB9dJ7S1tq3u7dGNGB3epGquf8t6mQBRf9Ea9Q8xKaC7</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>733013432</pqid></control><display><type>article</type><title>Plant cyanogenesis of Phaseolus lunatus and its relevance for herbivore-plant interaction: the importance of quantitative data</title><source>MEDLINE</source><source>SpringerLink Journals - AutoHoldings</source><creator>Ballhorn, D.J ; Lieberei, R ; Ganzhorn, J.U</creator><creatorcontrib>Ballhorn, D.J ; Lieberei, R ; Ganzhorn, J.U</creatorcontrib><description>Quantitative experimental results on the antiherbivorous effect of cyanogenesis are rare. In our analyses, we distinguished between the total amount of cyanide-containing compounds stored in a given tissue cyanogenic potential (HCNp) and the capacity for release of HCN per unit time (HCNc) from these cyanogenic precursors as a reaction to herbivory. We analyzed the impact of these cyanogenic features on herbivorous insects using different accessions of lima beans (Phaseolus lunatus L.) with different cyanogenic characteristics in their leaves and fourth instars of the generalist herbivore Schistocerca gregaria Forskal (Orthoptera, Acrididae). Young leaves exhibit a higher HCNp and HCNc than mature leaves. This ontogenetic variability of cyanogenesis was valid for all accessions studied. In no-choice bioassays, feeding of S. gregaria was reduced on high cyanogenic lima beans compared with low cyanogenic beans. A HCNp of about 15 micromol cyanide/g leaf (fresh weight) with a corresponding HCNc of about 1 micromol HCN released from leaf material within the first 10 min after complete tissue disintegration appears to be a threshold at which the first repellent effects on S. gregaria were observed. The repellent effect of cyanogenesis increased above these thresholds of HCNp and HCNc. No repellent action of cyanogenesis was observed on plants with lower HCNp and HCNc. These low cyanogenic accessions of P. lunatus were consumed extensively-with dramatic consequences for the herbivore. After consumption, locusts showed severe symptoms of intoxication. Choice assays confirmed the feeding preference of locusts for low over high cyanogenic leaf material of P. lunatus. The bioassays revealed total losses of HCN between 90 and 99% related to the estimated amount of ingested cyanide-containing compounds by the locusts. This general finding was independent of the cyanogenic status (high or low) of the leaf material.</description><identifier>ISSN: 0098-0331</identifier><identifier>EISSN: 1573-1561</identifier><identifier>DOI: 10.1007/s10886-005-5791-2</identifier><identifier>PMID: 16222786</identifier><identifier>CODEN: JCECD8</identifier><language>eng</language><publisher>New York, NY: Springer</publisher><subject>Acrididae ; Animal and plant ecology ; Animal, plant and microbial ecology ; Animals ; Autoecology ; Bioassays ; Biological and medical sciences ; chemical constituents of plants ; Cyanides ; cyanogen ; cyanogenesis ; Diet ; Feeding Behavior ; Fundamental and applied biological sciences. Psychology ; General aspects ; herbivores ; Herbivory ; Host-Parasite Interactions ; hydrogen cyanide ; Hydrogen Cyanide - metabolism ; insect pests ; Leaves ; lima beans ; Orthoptera ; Orthoptera - physiology ; pest resistance ; Phaseolus - metabolism ; Phaseolus - parasitology ; Phaseolus lunatus ; Plant Leaves ; plant-insect relations ; Schistocerca gregaria</subject><ispartof>Journal of chemical ecology, 2005-07, Vol.31 (7), p.1445-1473</ispartof><rights>2005 INIST-CNRS</rights><rights>Springer Science + Business Media, Inc. 2005</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c411t-a9cab5e85fb04d9666ce4d2a73cc5188c2c569ede4c5284265221823125b245e3</citedby><cites>FETCH-LOGICAL-c411t-a9cab5e85fb04d9666ce4d2a73cc5188c2c569ede4c5284265221823125b245e3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=17058884$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/16222786$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Ballhorn, D.J</creatorcontrib><creatorcontrib>Lieberei, R</creatorcontrib><creatorcontrib>Ganzhorn, J.U</creatorcontrib><title>Plant cyanogenesis of Phaseolus lunatus and its relevance for herbivore-plant interaction: the importance of quantitative data</title><title>Journal of chemical ecology</title><addtitle>J Chem Ecol</addtitle><description>Quantitative experimental results on the antiherbivorous effect of cyanogenesis are rare. In our analyses, we distinguished between the total amount of cyanide-containing compounds stored in a given tissue cyanogenic potential (HCNp) and the capacity for release of HCN per unit time (HCNc) from these cyanogenic precursors as a reaction to herbivory. We analyzed the impact of these cyanogenic features on herbivorous insects using different accessions of lima beans (Phaseolus lunatus L.) with different cyanogenic characteristics in their leaves and fourth instars of the generalist herbivore Schistocerca gregaria Forskal (Orthoptera, Acrididae). Young leaves exhibit a higher HCNp and HCNc than mature leaves. This ontogenetic variability of cyanogenesis was valid for all accessions studied. In no-choice bioassays, feeding of S. gregaria was reduced on high cyanogenic lima beans compared with low cyanogenic beans. A HCNp of about 15 micromol cyanide/g leaf (fresh weight) with a corresponding HCNc of about 1 micromol HCN released from leaf material within the first 10 min after complete tissue disintegration appears to be a threshold at which the first repellent effects on S. gregaria were observed. The repellent effect of cyanogenesis increased above these thresholds of HCNp and HCNc. No repellent action of cyanogenesis was observed on plants with lower HCNp and HCNc. These low cyanogenic accessions of P. lunatus were consumed extensively-with dramatic consequences for the herbivore. After consumption, locusts showed severe symptoms of intoxication. Choice assays confirmed the feeding preference of locusts for low over high cyanogenic leaf material of P. lunatus. The bioassays revealed total losses of HCN between 90 and 99% related to the estimated amount of ingested cyanide-containing compounds by the locusts. This general finding was independent of the cyanogenic status (high or low) of the leaf material.</description><subject>Acrididae</subject><subject>Animal and plant ecology</subject><subject>Animal, plant and microbial ecology</subject><subject>Animals</subject><subject>Autoecology</subject><subject>Bioassays</subject><subject>Biological and medical sciences</subject><subject>chemical constituents of plants</subject><subject>Cyanides</subject><subject>cyanogen</subject><subject>cyanogenesis</subject><subject>Diet</subject><subject>Feeding Behavior</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>General aspects</subject><subject>herbivores</subject><subject>Herbivory</subject><subject>Host-Parasite Interactions</subject><subject>hydrogen cyanide</subject><subject>Hydrogen Cyanide - metabolism</subject><subject>insect pests</subject><subject>Leaves</subject><subject>lima beans</subject><subject>Orthoptera</subject><subject>Orthoptera - physiology</subject><subject>pest resistance</subject><subject>Phaseolus - metabolism</subject><subject>Phaseolus - parasitology</subject><subject>Phaseolus lunatus</subject><subject>Plant Leaves</subject><subject>plant-insect relations</subject><subject>Schistocerca gregaria</subject><issn>0098-0331</issn><issn>1573-1561</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2005</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNpd0U2LFDEQBuAgijuu_gAvGgS9taaSTjrjTRa_YMEF3XOoTlfvZOnpzCbpgb34283sDCx4qstTL0W9jL0G8RGE6D5lENaaRgjd6G4NjXzCVqA71YA28JSthFjbRigFZ-xFzrdCCGmsfs7OwEgpO2tW7O_VhHPh_h7neEMz5ZB5HPnVBjPFacl8WmYsdeI88FAyTzTRHmdPfIyJbyj1YR8TNbuHnDAXSuhLiPNnXjbEw3YXU3nwNfZuqSgULGFPfMCCL9mzEadMr07znF1_-_rn4kdz-ev7z4svl41vAUqDa4-9JqvHXrTD2hjjqR0kdsp7DdZ66bVZ00Ct19K20mgpwUoFUvey1aTO2Ydj7i7Fu4VycduQPU31aIpLdtCBrr-RFb77D97GJc31NtcpJUC16oDgiHyKOSca3S6FLaZ7B8IdmnHHZlxtxh2acYedN6fgpd_S8LhxqqKC9yeA2eM0pvq0kB9dJ7S1tq3u7dGNGB3epGquf8t6mQBRf9Ea9Q8xKaC7</recordid><startdate>20050701</startdate><enddate>20050701</enddate><creator>Ballhorn, D.J</creator><creator>Lieberei, R</creator><creator>Ganzhorn, J.U</creator><general>Springer</general><general>Springer Nature B.V</general><scope>FBQ</scope><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QG</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7U7</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>88I</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2P</scope><scope>M7N</scope><scope>M7P</scope><scope>P64</scope><scope>PCBAR</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>RC3</scope></search><sort><creationdate>20050701</creationdate><title>Plant cyanogenesis of Phaseolus lunatus and its relevance for herbivore-plant interaction: the importance of quantitative data</title><author>Ballhorn, D.J ; Lieberei, R ; Ganzhorn, J.U</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c411t-a9cab5e85fb04d9666ce4d2a73cc5188c2c569ede4c5284265221823125b245e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2005</creationdate><topic>Acrididae</topic><topic>Animal and plant ecology</topic><topic>Animal, plant and microbial ecology</topic><topic>Animals</topic><topic>Autoecology</topic><topic>Bioassays</topic><topic>Biological and medical sciences</topic><topic>chemical constituents of plants</topic><topic>Cyanides</topic><topic>cyanogen</topic><topic>cyanogenesis</topic><topic>Diet</topic><topic>Feeding Behavior</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>General aspects</topic><topic>herbivores</topic><topic>Herbivory</topic><topic>Host-Parasite Interactions</topic><topic>hydrogen cyanide</topic><topic>Hydrogen Cyanide - metabolism</topic><topic>insect pests</topic><topic>Leaves</topic><topic>lima beans</topic><topic>Orthoptera</topic><topic>Orthoptera - physiology</topic><topic>pest resistance</topic><topic>Phaseolus - metabolism</topic><topic>Phaseolus - parasitology</topic><topic>Phaseolus lunatus</topic><topic>Plant Leaves</topic><topic>plant-insect relations</topic><topic>Schistocerca gregaria</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ballhorn, D.J</creatorcontrib><creatorcontrib>Lieberei, R</creatorcontrib><creatorcontrib>Ganzhorn, J.U</creatorcontrib><collection>AGRIS</collection><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Toxicology Abstracts</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric & Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Science Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Earth, Atmospheric & Aquatic Science Database</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>Genetics Abstracts</collection><jtitle>Journal of chemical ecology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ballhorn, D.J</au><au>Lieberei, R</au><au>Ganzhorn, J.U</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Plant cyanogenesis of Phaseolus lunatus and its relevance for herbivore-plant interaction: the importance of quantitative data</atitle><jtitle>Journal of chemical ecology</jtitle><addtitle>J Chem Ecol</addtitle><date>2005-07-01</date><risdate>2005</risdate><volume>31</volume><issue>7</issue><spage>1445</spage><epage>1473</epage><pages>1445-1473</pages><issn>0098-0331</issn><eissn>1573-1561</eissn><coden>JCECD8</coden><abstract>Quantitative experimental results on the antiherbivorous effect of cyanogenesis are rare. In our analyses, we distinguished between the total amount of cyanide-containing compounds stored in a given tissue cyanogenic potential (HCNp) and the capacity for release of HCN per unit time (HCNc) from these cyanogenic precursors as a reaction to herbivory. We analyzed the impact of these cyanogenic features on herbivorous insects using different accessions of lima beans (Phaseolus lunatus L.) with different cyanogenic characteristics in their leaves and fourth instars of the generalist herbivore Schistocerca gregaria Forskal (Orthoptera, Acrididae). Young leaves exhibit a higher HCNp and HCNc than mature leaves. This ontogenetic variability of cyanogenesis was valid for all accessions studied. In no-choice bioassays, feeding of S. gregaria was reduced on high cyanogenic lima beans compared with low cyanogenic beans. A HCNp of about 15 micromol cyanide/g leaf (fresh weight) with a corresponding HCNc of about 1 micromol HCN released from leaf material within the first 10 min after complete tissue disintegration appears to be a threshold at which the first repellent effects on S. gregaria were observed. The repellent effect of cyanogenesis increased above these thresholds of HCNp and HCNc. No repellent action of cyanogenesis was observed on plants with lower HCNp and HCNc. These low cyanogenic accessions of P. lunatus were consumed extensively-with dramatic consequences for the herbivore. After consumption, locusts showed severe symptoms of intoxication. Choice assays confirmed the feeding preference of locusts for low over high cyanogenic leaf material of P. lunatus. The bioassays revealed total losses of HCN between 90 and 99% related to the estimated amount of ingested cyanide-containing compounds by the locusts. This general finding was independent of the cyanogenic status (high or low) of the leaf material.</abstract><cop>New York, NY</cop><pub>Springer</pub><pmid>16222786</pmid><doi>10.1007/s10886-005-5791-2</doi><tpages>29</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0098-0331 |
ispartof | Journal of chemical ecology, 2005-07, Vol.31 (7), p.1445-1473 |
issn | 0098-0331 1573-1561 |
language | eng |
recordid | cdi_proquest_miscellaneous_17152682 |
source | MEDLINE; SpringerLink Journals - AutoHoldings |
subjects | Acrididae Animal and plant ecology Animal, plant and microbial ecology Animals Autoecology Bioassays Biological and medical sciences chemical constituents of plants Cyanides cyanogen cyanogenesis Diet Feeding Behavior Fundamental and applied biological sciences. Psychology General aspects herbivores Herbivory Host-Parasite Interactions hydrogen cyanide Hydrogen Cyanide - metabolism insect pests Leaves lima beans Orthoptera Orthoptera - physiology pest resistance Phaseolus - metabolism Phaseolus - parasitology Phaseolus lunatus Plant Leaves plant-insect relations Schistocerca gregaria |
title | Plant cyanogenesis of Phaseolus lunatus and its relevance for herbivore-plant interaction: the importance of quantitative data |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T04%3A32%3A42IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Plant%20cyanogenesis%20of%20Phaseolus%20lunatus%20and%20its%20relevance%20for%20herbivore-plant%20interaction:%20the%20importance%20of%20quantitative%20data&rft.jtitle=Journal%20of%20chemical%20ecology&rft.au=Ballhorn,%20D.J&rft.date=2005-07-01&rft.volume=31&rft.issue=7&rft.spage=1445&rft.epage=1473&rft.pages=1445-1473&rft.issn=0098-0331&rft.eissn=1573-1561&rft.coden=JCECD8&rft_id=info:doi/10.1007/s10886-005-5791-2&rft_dat=%3Cproquest_cross%3E2093703091%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=733013432&rft_id=info:pmid/16222786&rfr_iscdi=true |