Crystal structure of the dynamin tetramer
The crystal structure of the large GTPase dynamin tetramer is presented, suggesting a mechanism by which oligomerization of dynamin is regulated, and revealing how mutations that interfere with tetramer formation and autoinhibition are of relevance to understanding the congenital muscle disorders Ch...
Gespeichert in:
Veröffentlicht in: | Nature (London) 2015-09, Vol.525 (7569), p.404-408 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 408 |
---|---|
container_issue | 7569 |
container_start_page | 404 |
container_title | Nature (London) |
container_volume | 525 |
creator | Reubold, Thomas F. Faelber, Katja Plattner, Nuria Posor, York Ketel, Katharina Curth, Ute Schlegel, Jeanette Anand, Roopsee Manstein, Dietmar J. Noé, Frank Haucke, Volker Daumke, Oliver Eschenburg, Susanne |
description | The crystal structure of the large GTPase dynamin tetramer is presented, suggesting a mechanism by which oligomerization of dynamin is regulated, and revealing how mutations that interfere with tetramer formation and autoinhibition are of relevance to understanding the congenital muscle disorders Charcot–Marie–Tooth neuropathy and centronuclear myopathy.
Structure of a dynamin GTPases
The large GTPase enzyme dynamin mediates the shaping and remodelling of the membranes of various organelles. To do this it forms mainly tetramers, which assemble into oligomers for subsequent constriction and scission of membranes. A new study presents the crystal structure of a dynamin tetramer. Combining this information with additional analysis, Susanne Eschenburg and co-workers identify interfaces between dynamin dimers and propose a mechanism for how oligomerization of this protein might lead to the release of intramolecular, autoinhibitory interactions. The authors' mutational analyses are of relevance to understanding the congenital muscle disorders Charcot–Marie–Tooth neuropathy and centronuclear myopathy.
The mechanochemical protein dynamin is the prototype of the dynamin superfamily of large GTPases, which shape and remodel membranes in diverse cellular processes
1
. Dynamin forms predominantly tetramers in the cytosol, which oligomerize at the neck of clathrin-coated vesicles to mediate constriction and subsequent scission of the membrane
1
. Previous studies have described the architecture of dynamin dimers
2
,
3
, but the molecular determinants for dynamin assembly and its regulation have remained unclear. Here we present the crystal structure of the human dynamin tetramer in the nucleotide-free state. Combining structural data with mutational studies, oligomerization measurements and Markov state models of molecular dynamics simulations, we suggest a mechanism by which oligomerization of dynamin is linked to the release of intramolecular autoinhibitory interactions. We elucidate how mutations that interfere with tetramer formation and autoinhibition can lead to the congenital muscle disorders Charcot–Marie–Tooth neuropathy
4
and centronuclear myopathy
5
, respectively. Notably, the bent shape of the tetramer explains how dynamin assembles into a right-handed helical oligomer of defined diameter, which has direct implications for its function in membrane constriction. |
doi_str_mv | 10.1038/nature14880 |
format | Article |
fullrecord | <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_1713947085</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A429410729</galeid><sourcerecordid>A429410729</sourcerecordid><originalsourceid>FETCH-LOGICAL-c593t-8faeb8165fbcdf1d1e0f8968f77a5405f65cc91331f4ad01a45330532b97a3e53</originalsourceid><addsrcrecordid>eNp10kFLHDEUB_AgLbpVT97LUC-VOppMkknmuCytCqLQWjyGbOZlOzKTWZMMdL99M2hlt0zJIZD88ufl8RA6IfiCYCovnY6DB8KkxHtoRpgoc1ZK8Q7NMC5kjiUtD9CHEJ4wxpwIto8OipLioqjkDJ0t_CZE3WYh-sGMQVlvs_gLsnrjdNe4LEL0ugN_hN5b3QY4ft0P0c9vXx8W1_nt_dXNYn6bG17RmEurYSlJye3S1JbUBLCVVSmtEJozzG3JjakIpcQyXWOiGacUc1osK6EpcHqIPr_krn3_PECIqmuCgbbVDvohKCIIrZjAcqSn_9CnfvAuVTcqXrKCp_A3tdItqMbZPn3IjKFqzoqKESyKKql8Qq3Agddt78A26XjHf5rwZt08q210MYHSqqFrzGTq2c6DZCL8jis9hKBufnzftV_-b-cPj4u7SW18H4IHq9a-6bTfKILVOEdqa46S_vja2WHZQf1m_w5OAucvIKQrtwK_1fqJvD-os8wC</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1715642553</pqid></control><display><type>article</type><title>Crystal structure of the dynamin tetramer</title><source>MEDLINE</source><source>Nature Journals Online</source><source>SpringerLink Journals - AutoHoldings</source><creator>Reubold, Thomas F. ; Faelber, Katja ; Plattner, Nuria ; Posor, York ; Ketel, Katharina ; Curth, Ute ; Schlegel, Jeanette ; Anand, Roopsee ; Manstein, Dietmar J. ; Noé, Frank ; Haucke, Volker ; Daumke, Oliver ; Eschenburg, Susanne</creator><creatorcontrib>Reubold, Thomas F. ; Faelber, Katja ; Plattner, Nuria ; Posor, York ; Ketel, Katharina ; Curth, Ute ; Schlegel, Jeanette ; Anand, Roopsee ; Manstein, Dietmar J. ; Noé, Frank ; Haucke, Volker ; Daumke, Oliver ; Eschenburg, Susanne</creatorcontrib><description>The crystal structure of the large GTPase dynamin tetramer is presented, suggesting a mechanism by which oligomerization of dynamin is regulated, and revealing how mutations that interfere with tetramer formation and autoinhibition are of relevance to understanding the congenital muscle disorders Charcot–Marie–Tooth neuropathy and centronuclear myopathy.
Structure of a dynamin GTPases
The large GTPase enzyme dynamin mediates the shaping and remodelling of the membranes of various organelles. To do this it forms mainly tetramers, which assemble into oligomers for subsequent constriction and scission of membranes. A new study presents the crystal structure of a dynamin tetramer. Combining this information with additional analysis, Susanne Eschenburg and co-workers identify interfaces between dynamin dimers and propose a mechanism for how oligomerization of this protein might lead to the release of intramolecular, autoinhibitory interactions. The authors' mutational analyses are of relevance to understanding the congenital muscle disorders Charcot–Marie–Tooth neuropathy and centronuclear myopathy.
The mechanochemical protein dynamin is the prototype of the dynamin superfamily of large GTPases, which shape and remodel membranes in diverse cellular processes
1
. Dynamin forms predominantly tetramers in the cytosol, which oligomerize at the neck of clathrin-coated vesicles to mediate constriction and subsequent scission of the membrane
1
. Previous studies have described the architecture of dynamin dimers
2
,
3
, but the molecular determinants for dynamin assembly and its regulation have remained unclear. Here we present the crystal structure of the human dynamin tetramer in the nucleotide-free state. Combining structural data with mutational studies, oligomerization measurements and Markov state models of molecular dynamics simulations, we suggest a mechanism by which oligomerization of dynamin is linked to the release of intramolecular autoinhibitory interactions. We elucidate how mutations that interfere with tetramer formation and autoinhibition can lead to the congenital muscle disorders Charcot–Marie–Tooth neuropathy
4
and centronuclear myopathy
5
, respectively. Notably, the bent shape of the tetramer explains how dynamin assembles into a right-handed helical oligomer of defined diameter, which has direct implications for its function in membrane constriction.</description><identifier>ISSN: 0028-0836</identifier><identifier>EISSN: 1476-4687</identifier><identifier>DOI: 10.1038/nature14880</identifier><identifier>PMID: 26302298</identifier><identifier>CODEN: NATUAS</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>13/89 ; 14/19 ; 14/28 ; 14/35 ; 631/45/612 ; 631/535/1266 ; 631/80/313/2377 ; 82/16 ; 82/29 ; 82/83 ; Analysis ; Charcot-Marie-Tooth Disease ; Crystal structure ; Crystallography, X-Ray ; Crystals ; Dynamins - antagonists & inhibitors ; Dynamins - chemistry ; Dynamins - genetics ; Dynamins - metabolism ; Humanities and Social Sciences ; Humans ; letter ; Markov Chains ; Markov processes ; Membranes ; Models, Molecular ; Molecular dynamics ; Molecular Dynamics Simulation ; multidisciplinary ; Mutant Proteins - antagonists & inhibitors ; Mutant Proteins - chemistry ; Mutant Proteins - genetics ; Mutant Proteins - metabolism ; Mutation ; Mutation - genetics ; Myopathies, Structural, Congenital ; Nucleotides ; Oligomers ; Protein Multimerization - genetics ; Proteins ; Science ; Structure ; Structure-Activity Relationship</subject><ispartof>Nature (London), 2015-09, Vol.525 (7569), p.404-408</ispartof><rights>Springer Nature Limited 2015</rights><rights>COPYRIGHT 2015 Nature Publishing Group</rights><rights>Copyright Nature Publishing Group Sep 17, 2015</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c593t-8faeb8165fbcdf1d1e0f8968f77a5405f65cc91331f4ad01a45330532b97a3e53</citedby><cites>FETCH-LOGICAL-c593t-8faeb8165fbcdf1d1e0f8968f77a5405f65cc91331f4ad01a45330532b97a3e53</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1038/nature14880$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1038/nature14880$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/26302298$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Reubold, Thomas F.</creatorcontrib><creatorcontrib>Faelber, Katja</creatorcontrib><creatorcontrib>Plattner, Nuria</creatorcontrib><creatorcontrib>Posor, York</creatorcontrib><creatorcontrib>Ketel, Katharina</creatorcontrib><creatorcontrib>Curth, Ute</creatorcontrib><creatorcontrib>Schlegel, Jeanette</creatorcontrib><creatorcontrib>Anand, Roopsee</creatorcontrib><creatorcontrib>Manstein, Dietmar J.</creatorcontrib><creatorcontrib>Noé, Frank</creatorcontrib><creatorcontrib>Haucke, Volker</creatorcontrib><creatorcontrib>Daumke, Oliver</creatorcontrib><creatorcontrib>Eschenburg, Susanne</creatorcontrib><title>Crystal structure of the dynamin tetramer</title><title>Nature (London)</title><addtitle>Nature</addtitle><addtitle>Nature</addtitle><description>The crystal structure of the large GTPase dynamin tetramer is presented, suggesting a mechanism by which oligomerization of dynamin is regulated, and revealing how mutations that interfere with tetramer formation and autoinhibition are of relevance to understanding the congenital muscle disorders Charcot–Marie–Tooth neuropathy and centronuclear myopathy.
Structure of a dynamin GTPases
The large GTPase enzyme dynamin mediates the shaping and remodelling of the membranes of various organelles. To do this it forms mainly tetramers, which assemble into oligomers for subsequent constriction and scission of membranes. A new study presents the crystal structure of a dynamin tetramer. Combining this information with additional analysis, Susanne Eschenburg and co-workers identify interfaces between dynamin dimers and propose a mechanism for how oligomerization of this protein might lead to the release of intramolecular, autoinhibitory interactions. The authors' mutational analyses are of relevance to understanding the congenital muscle disorders Charcot–Marie–Tooth neuropathy and centronuclear myopathy.
The mechanochemical protein dynamin is the prototype of the dynamin superfamily of large GTPases, which shape and remodel membranes in diverse cellular processes
1
. Dynamin forms predominantly tetramers in the cytosol, which oligomerize at the neck of clathrin-coated vesicles to mediate constriction and subsequent scission of the membrane
1
. Previous studies have described the architecture of dynamin dimers
2
,
3
, but the molecular determinants for dynamin assembly and its regulation have remained unclear. Here we present the crystal structure of the human dynamin tetramer in the nucleotide-free state. Combining structural data with mutational studies, oligomerization measurements and Markov state models of molecular dynamics simulations, we suggest a mechanism by which oligomerization of dynamin is linked to the release of intramolecular autoinhibitory interactions. We elucidate how mutations that interfere with tetramer formation and autoinhibition can lead to the congenital muscle disorders Charcot–Marie–Tooth neuropathy
4
and centronuclear myopathy
5
, respectively. Notably, the bent shape of the tetramer explains how dynamin assembles into a right-handed helical oligomer of defined diameter, which has direct implications for its function in membrane constriction.</description><subject>13/89</subject><subject>14/19</subject><subject>14/28</subject><subject>14/35</subject><subject>631/45/612</subject><subject>631/535/1266</subject><subject>631/80/313/2377</subject><subject>82/16</subject><subject>82/29</subject><subject>82/83</subject><subject>Analysis</subject><subject>Charcot-Marie-Tooth Disease</subject><subject>Crystal structure</subject><subject>Crystallography, X-Ray</subject><subject>Crystals</subject><subject>Dynamins - antagonists & inhibitors</subject><subject>Dynamins - chemistry</subject><subject>Dynamins - genetics</subject><subject>Dynamins - metabolism</subject><subject>Humanities and Social Sciences</subject><subject>Humans</subject><subject>letter</subject><subject>Markov Chains</subject><subject>Markov processes</subject><subject>Membranes</subject><subject>Models, Molecular</subject><subject>Molecular dynamics</subject><subject>Molecular Dynamics Simulation</subject><subject>multidisciplinary</subject><subject>Mutant Proteins - antagonists & inhibitors</subject><subject>Mutant Proteins - chemistry</subject><subject>Mutant Proteins - genetics</subject><subject>Mutant Proteins - metabolism</subject><subject>Mutation</subject><subject>Mutation - genetics</subject><subject>Myopathies, Structural, Congenital</subject><subject>Nucleotides</subject><subject>Oligomers</subject><subject>Protein Multimerization - genetics</subject><subject>Proteins</subject><subject>Science</subject><subject>Structure</subject><subject>Structure-Activity Relationship</subject><issn>0028-0836</issn><issn>1476-4687</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>8G5</sourceid><sourceid>BEC</sourceid><sourceid>BENPR</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNp10kFLHDEUB_AgLbpVT97LUC-VOppMkknmuCytCqLQWjyGbOZlOzKTWZMMdL99M2hlt0zJIZD88ufl8RA6IfiCYCovnY6DB8KkxHtoRpgoc1ZK8Q7NMC5kjiUtD9CHEJ4wxpwIto8OipLioqjkDJ0t_CZE3WYh-sGMQVlvs_gLsnrjdNe4LEL0ugN_hN5b3QY4ft0P0c9vXx8W1_nt_dXNYn6bG17RmEurYSlJye3S1JbUBLCVVSmtEJozzG3JjakIpcQyXWOiGacUc1osK6EpcHqIPr_krn3_PECIqmuCgbbVDvohKCIIrZjAcqSn_9CnfvAuVTcqXrKCp_A3tdItqMbZPn3IjKFqzoqKESyKKql8Qq3Agddt78A26XjHf5rwZt08q210MYHSqqFrzGTq2c6DZCL8jis9hKBufnzftV_-b-cPj4u7SW18H4IHq9a-6bTfKILVOEdqa46S_vja2WHZQf1m_w5OAucvIKQrtwK_1fqJvD-os8wC</recordid><startdate>20150917</startdate><enddate>20150917</enddate><creator>Reubold, Thomas F.</creator><creator>Faelber, Katja</creator><creator>Plattner, Nuria</creator><creator>Posor, York</creator><creator>Ketel, Katharina</creator><creator>Curth, Ute</creator><creator>Schlegel, Jeanette</creator><creator>Anand, Roopsee</creator><creator>Manstein, Dietmar J.</creator><creator>Noé, Frank</creator><creator>Haucke, Volker</creator><creator>Daumke, Oliver</creator><creator>Eschenburg, Susanne</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>ATWCN</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7RV</scope><scope>7SN</scope><scope>7SS</scope><scope>7ST</scope><scope>7T5</scope><scope>7TG</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>88G</scope><scope>88I</scope><scope>8AF</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>KB0</scope><scope>KL.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M2M</scope><scope>M2O</scope><scope>M2P</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PATMY</scope><scope>PCBAR</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PSYQQ</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>Q9U</scope><scope>R05</scope><scope>RC3</scope><scope>S0X</scope><scope>SOI</scope><scope>7X8</scope></search><sort><creationdate>20150917</creationdate><title>Crystal structure of the dynamin tetramer</title><author>Reubold, Thomas F. ; Faelber, Katja ; Plattner, Nuria ; Posor, York ; Ketel, Katharina ; Curth, Ute ; Schlegel, Jeanette ; Anand, Roopsee ; Manstein, Dietmar J. ; Noé, Frank ; Haucke, Volker ; Daumke, Oliver ; Eschenburg, Susanne</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c593t-8faeb8165fbcdf1d1e0f8968f77a5405f65cc91331f4ad01a45330532b97a3e53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>13/89</topic><topic>14/19</topic><topic>14/28</topic><topic>14/35</topic><topic>631/45/612</topic><topic>631/535/1266</topic><topic>631/80/313/2377</topic><topic>82/16</topic><topic>82/29</topic><topic>82/83</topic><topic>Analysis</topic><topic>Charcot-Marie-Tooth Disease</topic><topic>Crystal structure</topic><topic>Crystallography, X-Ray</topic><topic>Crystals</topic><topic>Dynamins - antagonists & inhibitors</topic><topic>Dynamins - chemistry</topic><topic>Dynamins - genetics</topic><topic>Dynamins - metabolism</topic><topic>Humanities and Social Sciences</topic><topic>Humans</topic><topic>letter</topic><topic>Markov Chains</topic><topic>Markov processes</topic><topic>Membranes</topic><topic>Models, Molecular</topic><topic>Molecular dynamics</topic><topic>Molecular Dynamics Simulation</topic><topic>multidisciplinary</topic><topic>Mutant Proteins - antagonists & inhibitors</topic><topic>Mutant Proteins - chemistry</topic><topic>Mutant Proteins - genetics</topic><topic>Mutant Proteins - metabolism</topic><topic>Mutation</topic><topic>Mutation - genetics</topic><topic>Myopathies, Structural, Congenital</topic><topic>Nucleotides</topic><topic>Oligomers</topic><topic>Protein Multimerization - genetics</topic><topic>Proteins</topic><topic>Science</topic><topic>Structure</topic><topic>Structure-Activity Relationship</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Reubold, Thomas F.</creatorcontrib><creatorcontrib>Faelber, Katja</creatorcontrib><creatorcontrib>Plattner, Nuria</creatorcontrib><creatorcontrib>Posor, York</creatorcontrib><creatorcontrib>Ketel, Katharina</creatorcontrib><creatorcontrib>Curth, Ute</creatorcontrib><creatorcontrib>Schlegel, Jeanette</creatorcontrib><creatorcontrib>Anand, Roopsee</creatorcontrib><creatorcontrib>Manstein, Dietmar J.</creatorcontrib><creatorcontrib>Noé, Frank</creatorcontrib><creatorcontrib>Haucke, Volker</creatorcontrib><creatorcontrib>Daumke, Oliver</creatorcontrib><creatorcontrib>Eschenburg, Susanne</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Middle School</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Nursing & Allied Health Database</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Environment Abstracts</collection><collection>Immunology Abstracts</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Psychology Database (Alumni)</collection><collection>Science Database (Alumni Edition)</collection><collection>STEM Database</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>eLibrary</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric & Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>Nursing & Allied Health Database (Alumni Edition)</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Agricultural Science Database</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>ProQuest Psychology</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Nursing & Allied Health Premium</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Earth, Atmospheric & Aquatic Science Database</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest One Psychology</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><collection>University of Michigan</collection><collection>Genetics Abstracts</collection><collection>SIRS Editorial</collection><collection>Environment Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Nature (London)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Reubold, Thomas F.</au><au>Faelber, Katja</au><au>Plattner, Nuria</au><au>Posor, York</au><au>Ketel, Katharina</au><au>Curth, Ute</au><au>Schlegel, Jeanette</au><au>Anand, Roopsee</au><au>Manstein, Dietmar J.</au><au>Noé, Frank</au><au>Haucke, Volker</au><au>Daumke, Oliver</au><au>Eschenburg, Susanne</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Crystal structure of the dynamin tetramer</atitle><jtitle>Nature (London)</jtitle><stitle>Nature</stitle><addtitle>Nature</addtitle><date>2015-09-17</date><risdate>2015</risdate><volume>525</volume><issue>7569</issue><spage>404</spage><epage>408</epage><pages>404-408</pages><issn>0028-0836</issn><eissn>1476-4687</eissn><coden>NATUAS</coden><abstract>The crystal structure of the large GTPase dynamin tetramer is presented, suggesting a mechanism by which oligomerization of dynamin is regulated, and revealing how mutations that interfere with tetramer formation and autoinhibition are of relevance to understanding the congenital muscle disorders Charcot–Marie–Tooth neuropathy and centronuclear myopathy.
Structure of a dynamin GTPases
The large GTPase enzyme dynamin mediates the shaping and remodelling of the membranes of various organelles. To do this it forms mainly tetramers, which assemble into oligomers for subsequent constriction and scission of membranes. A new study presents the crystal structure of a dynamin tetramer. Combining this information with additional analysis, Susanne Eschenburg and co-workers identify interfaces between dynamin dimers and propose a mechanism for how oligomerization of this protein might lead to the release of intramolecular, autoinhibitory interactions. The authors' mutational analyses are of relevance to understanding the congenital muscle disorders Charcot–Marie–Tooth neuropathy and centronuclear myopathy.
The mechanochemical protein dynamin is the prototype of the dynamin superfamily of large GTPases, which shape and remodel membranes in diverse cellular processes
1
. Dynamin forms predominantly tetramers in the cytosol, which oligomerize at the neck of clathrin-coated vesicles to mediate constriction and subsequent scission of the membrane
1
. Previous studies have described the architecture of dynamin dimers
2
,
3
, but the molecular determinants for dynamin assembly and its regulation have remained unclear. Here we present the crystal structure of the human dynamin tetramer in the nucleotide-free state. Combining structural data with mutational studies, oligomerization measurements and Markov state models of molecular dynamics simulations, we suggest a mechanism by which oligomerization of dynamin is linked to the release of intramolecular autoinhibitory interactions. We elucidate how mutations that interfere with tetramer formation and autoinhibition can lead to the congenital muscle disorders Charcot–Marie–Tooth neuropathy
4
and centronuclear myopathy
5
, respectively. Notably, the bent shape of the tetramer explains how dynamin assembles into a right-handed helical oligomer of defined diameter, which has direct implications for its function in membrane constriction.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>26302298</pmid><doi>10.1038/nature14880</doi><tpages>5</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0028-0836 |
ispartof | Nature (London), 2015-09, Vol.525 (7569), p.404-408 |
issn | 0028-0836 1476-4687 |
language | eng |
recordid | cdi_proquest_miscellaneous_1713947085 |
source | MEDLINE; Nature Journals Online; SpringerLink Journals - AutoHoldings |
subjects | 13/89 14/19 14/28 14/35 631/45/612 631/535/1266 631/80/313/2377 82/16 82/29 82/83 Analysis Charcot-Marie-Tooth Disease Crystal structure Crystallography, X-Ray Crystals Dynamins - antagonists & inhibitors Dynamins - chemistry Dynamins - genetics Dynamins - metabolism Humanities and Social Sciences Humans letter Markov Chains Markov processes Membranes Models, Molecular Molecular dynamics Molecular Dynamics Simulation multidisciplinary Mutant Proteins - antagonists & inhibitors Mutant Proteins - chemistry Mutant Proteins - genetics Mutant Proteins - metabolism Mutation Mutation - genetics Myopathies, Structural, Congenital Nucleotides Oligomers Protein Multimerization - genetics Proteins Science Structure Structure-Activity Relationship |
title | Crystal structure of the dynamin tetramer |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-28T14%3A25%3A39IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Crystal%20structure%20of%20the%20dynamin%20tetramer&rft.jtitle=Nature%20(London)&rft.au=Reubold,%20Thomas%20F.&rft.date=2015-09-17&rft.volume=525&rft.issue=7569&rft.spage=404&rft.epage=408&rft.pages=404-408&rft.issn=0028-0836&rft.eissn=1476-4687&rft.coden=NATUAS&rft_id=info:doi/10.1038/nature14880&rft_dat=%3Cgale_proqu%3EA429410729%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1715642553&rft_id=info:pmid/26302298&rft_galeid=A429410729&rfr_iscdi=true |