Crystal structure of the dynamin tetramer

The crystal structure of the large GTPase dynamin tetramer is presented, suggesting a mechanism by which oligomerization of dynamin is regulated, and revealing how mutations that interfere with tetramer formation and autoinhibition are of relevance to understanding the congenital muscle disorders Ch...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nature (London) 2015-09, Vol.525 (7569), p.404-408
Hauptverfasser: Reubold, Thomas F., Faelber, Katja, Plattner, Nuria, Posor, York, Ketel, Katharina, Curth, Ute, Schlegel, Jeanette, Anand, Roopsee, Manstein, Dietmar J., Noé, Frank, Haucke, Volker, Daumke, Oliver, Eschenburg, Susanne
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 408
container_issue 7569
container_start_page 404
container_title Nature (London)
container_volume 525
creator Reubold, Thomas F.
Faelber, Katja
Plattner, Nuria
Posor, York
Ketel, Katharina
Curth, Ute
Schlegel, Jeanette
Anand, Roopsee
Manstein, Dietmar J.
Noé, Frank
Haucke, Volker
Daumke, Oliver
Eschenburg, Susanne
description The crystal structure of the large GTPase dynamin tetramer is presented, suggesting a mechanism by which oligomerization of dynamin is regulated, and revealing how mutations that interfere with tetramer formation and autoinhibition are of relevance to understanding the congenital muscle disorders Charcot–Marie–Tooth neuropathy and centronuclear myopathy. Structure of a dynamin GTPases The large GTPase enzyme dynamin mediates the shaping and remodelling of the membranes of various organelles. To do this it forms mainly tetramers, which assemble into oligomers for subsequent constriction and scission of membranes. A new study presents the crystal structure of a dynamin tetramer. Combining this information with additional analysis, Susanne Eschenburg and co-workers identify interfaces between dynamin dimers and propose a mechanism for how oligomerization of this protein might lead to the release of intramolecular, autoinhibitory interactions. The authors' mutational analyses are of relevance to understanding the congenital muscle disorders Charcot–Marie–Tooth neuropathy and centronuclear myopathy. The mechanochemical protein dynamin is the prototype of the dynamin superfamily of large GTPases, which shape and remodel membranes in diverse cellular processes 1 . Dynamin forms predominantly tetramers in the cytosol, which oligomerize at the neck of clathrin-coated vesicles to mediate constriction and subsequent scission of the membrane 1 . Previous studies have described the architecture of dynamin dimers 2 , 3 , but the molecular determinants for dynamin assembly and its regulation have remained unclear. Here we present the crystal structure of the human dynamin tetramer in the nucleotide-free state. Combining structural data with mutational studies, oligomerization measurements and Markov state models of molecular dynamics simulations, we suggest a mechanism by which oligomerization of dynamin is linked to the release of intramolecular autoinhibitory interactions. We elucidate how mutations that interfere with tetramer formation and autoinhibition can lead to the congenital muscle disorders Charcot–Marie–Tooth neuropathy 4 and centronuclear myopathy 5 , respectively. Notably, the bent shape of the tetramer explains how dynamin assembles into a right-handed helical oligomer of defined diameter, which has direct implications for its function in membrane constriction.
doi_str_mv 10.1038/nature14880
format Article
fullrecord <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_1713947085</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A429410729</galeid><sourcerecordid>A429410729</sourcerecordid><originalsourceid>FETCH-LOGICAL-c593t-8faeb8165fbcdf1d1e0f8968f77a5405f65cc91331f4ad01a45330532b97a3e53</originalsourceid><addsrcrecordid>eNp10kFLHDEUB_AgLbpVT97LUC-VOppMkknmuCytCqLQWjyGbOZlOzKTWZMMdL99M2hlt0zJIZD88ufl8RA6IfiCYCovnY6DB8KkxHtoRpgoc1ZK8Q7NMC5kjiUtD9CHEJ4wxpwIto8OipLioqjkDJ0t_CZE3WYh-sGMQVlvs_gLsnrjdNe4LEL0ugN_hN5b3QY4ft0P0c9vXx8W1_nt_dXNYn6bG17RmEurYSlJye3S1JbUBLCVVSmtEJozzG3JjakIpcQyXWOiGacUc1osK6EpcHqIPr_krn3_PECIqmuCgbbVDvohKCIIrZjAcqSn_9CnfvAuVTcqXrKCp_A3tdItqMbZPn3IjKFqzoqKESyKKql8Qq3Agddt78A26XjHf5rwZt08q210MYHSqqFrzGTq2c6DZCL8jis9hKBufnzftV_-b-cPj4u7SW18H4IHq9a-6bTfKILVOEdqa46S_vja2WHZQf1m_w5OAucvIKQrtwK_1fqJvD-os8wC</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1715642553</pqid></control><display><type>article</type><title>Crystal structure of the dynamin tetramer</title><source>MEDLINE</source><source>Nature Journals Online</source><source>SpringerLink Journals - AutoHoldings</source><creator>Reubold, Thomas F. ; Faelber, Katja ; Plattner, Nuria ; Posor, York ; Ketel, Katharina ; Curth, Ute ; Schlegel, Jeanette ; Anand, Roopsee ; Manstein, Dietmar J. ; Noé, Frank ; Haucke, Volker ; Daumke, Oliver ; Eschenburg, Susanne</creator><creatorcontrib>Reubold, Thomas F. ; Faelber, Katja ; Plattner, Nuria ; Posor, York ; Ketel, Katharina ; Curth, Ute ; Schlegel, Jeanette ; Anand, Roopsee ; Manstein, Dietmar J. ; Noé, Frank ; Haucke, Volker ; Daumke, Oliver ; Eschenburg, Susanne</creatorcontrib><description>The crystal structure of the large GTPase dynamin tetramer is presented, suggesting a mechanism by which oligomerization of dynamin is regulated, and revealing how mutations that interfere with tetramer formation and autoinhibition are of relevance to understanding the congenital muscle disorders Charcot–Marie–Tooth neuropathy and centronuclear myopathy. Structure of a dynamin GTPases The large GTPase enzyme dynamin mediates the shaping and remodelling of the membranes of various organelles. To do this it forms mainly tetramers, which assemble into oligomers for subsequent constriction and scission of membranes. A new study presents the crystal structure of a dynamin tetramer. Combining this information with additional analysis, Susanne Eschenburg and co-workers identify interfaces between dynamin dimers and propose a mechanism for how oligomerization of this protein might lead to the release of intramolecular, autoinhibitory interactions. The authors' mutational analyses are of relevance to understanding the congenital muscle disorders Charcot–Marie–Tooth neuropathy and centronuclear myopathy. The mechanochemical protein dynamin is the prototype of the dynamin superfamily of large GTPases, which shape and remodel membranes in diverse cellular processes 1 . Dynamin forms predominantly tetramers in the cytosol, which oligomerize at the neck of clathrin-coated vesicles to mediate constriction and subsequent scission of the membrane 1 . Previous studies have described the architecture of dynamin dimers 2 , 3 , but the molecular determinants for dynamin assembly and its regulation have remained unclear. Here we present the crystal structure of the human dynamin tetramer in the nucleotide-free state. Combining structural data with mutational studies, oligomerization measurements and Markov state models of molecular dynamics simulations, we suggest a mechanism by which oligomerization of dynamin is linked to the release of intramolecular autoinhibitory interactions. We elucidate how mutations that interfere with tetramer formation and autoinhibition can lead to the congenital muscle disorders Charcot–Marie–Tooth neuropathy 4 and centronuclear myopathy 5 , respectively. Notably, the bent shape of the tetramer explains how dynamin assembles into a right-handed helical oligomer of defined diameter, which has direct implications for its function in membrane constriction.</description><identifier>ISSN: 0028-0836</identifier><identifier>EISSN: 1476-4687</identifier><identifier>DOI: 10.1038/nature14880</identifier><identifier>PMID: 26302298</identifier><identifier>CODEN: NATUAS</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>13/89 ; 14/19 ; 14/28 ; 14/35 ; 631/45/612 ; 631/535/1266 ; 631/80/313/2377 ; 82/16 ; 82/29 ; 82/83 ; Analysis ; Charcot-Marie-Tooth Disease ; Crystal structure ; Crystallography, X-Ray ; Crystals ; Dynamins - antagonists &amp; inhibitors ; Dynamins - chemistry ; Dynamins - genetics ; Dynamins - metabolism ; Humanities and Social Sciences ; Humans ; letter ; Markov Chains ; Markov processes ; Membranes ; Models, Molecular ; Molecular dynamics ; Molecular Dynamics Simulation ; multidisciplinary ; Mutant Proteins - antagonists &amp; inhibitors ; Mutant Proteins - chemistry ; Mutant Proteins - genetics ; Mutant Proteins - metabolism ; Mutation ; Mutation - genetics ; Myopathies, Structural, Congenital ; Nucleotides ; Oligomers ; Protein Multimerization - genetics ; Proteins ; Science ; Structure ; Structure-Activity Relationship</subject><ispartof>Nature (London), 2015-09, Vol.525 (7569), p.404-408</ispartof><rights>Springer Nature Limited 2015</rights><rights>COPYRIGHT 2015 Nature Publishing Group</rights><rights>Copyright Nature Publishing Group Sep 17, 2015</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c593t-8faeb8165fbcdf1d1e0f8968f77a5405f65cc91331f4ad01a45330532b97a3e53</citedby><cites>FETCH-LOGICAL-c593t-8faeb8165fbcdf1d1e0f8968f77a5405f65cc91331f4ad01a45330532b97a3e53</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1038/nature14880$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1038/nature14880$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/26302298$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Reubold, Thomas F.</creatorcontrib><creatorcontrib>Faelber, Katja</creatorcontrib><creatorcontrib>Plattner, Nuria</creatorcontrib><creatorcontrib>Posor, York</creatorcontrib><creatorcontrib>Ketel, Katharina</creatorcontrib><creatorcontrib>Curth, Ute</creatorcontrib><creatorcontrib>Schlegel, Jeanette</creatorcontrib><creatorcontrib>Anand, Roopsee</creatorcontrib><creatorcontrib>Manstein, Dietmar J.</creatorcontrib><creatorcontrib>Noé, Frank</creatorcontrib><creatorcontrib>Haucke, Volker</creatorcontrib><creatorcontrib>Daumke, Oliver</creatorcontrib><creatorcontrib>Eschenburg, Susanne</creatorcontrib><title>Crystal structure of the dynamin tetramer</title><title>Nature (London)</title><addtitle>Nature</addtitle><addtitle>Nature</addtitle><description>The crystal structure of the large GTPase dynamin tetramer is presented, suggesting a mechanism by which oligomerization of dynamin is regulated, and revealing how mutations that interfere with tetramer formation and autoinhibition are of relevance to understanding the congenital muscle disorders Charcot–Marie–Tooth neuropathy and centronuclear myopathy. Structure of a dynamin GTPases The large GTPase enzyme dynamin mediates the shaping and remodelling of the membranes of various organelles. To do this it forms mainly tetramers, which assemble into oligomers for subsequent constriction and scission of membranes. A new study presents the crystal structure of a dynamin tetramer. Combining this information with additional analysis, Susanne Eschenburg and co-workers identify interfaces between dynamin dimers and propose a mechanism for how oligomerization of this protein might lead to the release of intramolecular, autoinhibitory interactions. The authors' mutational analyses are of relevance to understanding the congenital muscle disorders Charcot–Marie–Tooth neuropathy and centronuclear myopathy. The mechanochemical protein dynamin is the prototype of the dynamin superfamily of large GTPases, which shape and remodel membranes in diverse cellular processes 1 . Dynamin forms predominantly tetramers in the cytosol, which oligomerize at the neck of clathrin-coated vesicles to mediate constriction and subsequent scission of the membrane 1 . Previous studies have described the architecture of dynamin dimers 2 , 3 , but the molecular determinants for dynamin assembly and its regulation have remained unclear. Here we present the crystal structure of the human dynamin tetramer in the nucleotide-free state. Combining structural data with mutational studies, oligomerization measurements and Markov state models of molecular dynamics simulations, we suggest a mechanism by which oligomerization of dynamin is linked to the release of intramolecular autoinhibitory interactions. We elucidate how mutations that interfere with tetramer formation and autoinhibition can lead to the congenital muscle disorders Charcot–Marie–Tooth neuropathy 4 and centronuclear myopathy 5 , respectively. Notably, the bent shape of the tetramer explains how dynamin assembles into a right-handed helical oligomer of defined diameter, which has direct implications for its function in membrane constriction.</description><subject>13/89</subject><subject>14/19</subject><subject>14/28</subject><subject>14/35</subject><subject>631/45/612</subject><subject>631/535/1266</subject><subject>631/80/313/2377</subject><subject>82/16</subject><subject>82/29</subject><subject>82/83</subject><subject>Analysis</subject><subject>Charcot-Marie-Tooth Disease</subject><subject>Crystal structure</subject><subject>Crystallography, X-Ray</subject><subject>Crystals</subject><subject>Dynamins - antagonists &amp; inhibitors</subject><subject>Dynamins - chemistry</subject><subject>Dynamins - genetics</subject><subject>Dynamins - metabolism</subject><subject>Humanities and Social Sciences</subject><subject>Humans</subject><subject>letter</subject><subject>Markov Chains</subject><subject>Markov processes</subject><subject>Membranes</subject><subject>Models, Molecular</subject><subject>Molecular dynamics</subject><subject>Molecular Dynamics Simulation</subject><subject>multidisciplinary</subject><subject>Mutant Proteins - antagonists &amp; inhibitors</subject><subject>Mutant Proteins - chemistry</subject><subject>Mutant Proteins - genetics</subject><subject>Mutant Proteins - metabolism</subject><subject>Mutation</subject><subject>Mutation - genetics</subject><subject>Myopathies, Structural, Congenital</subject><subject>Nucleotides</subject><subject>Oligomers</subject><subject>Protein Multimerization - genetics</subject><subject>Proteins</subject><subject>Science</subject><subject>Structure</subject><subject>Structure-Activity Relationship</subject><issn>0028-0836</issn><issn>1476-4687</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>8G5</sourceid><sourceid>BEC</sourceid><sourceid>BENPR</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNp10kFLHDEUB_AgLbpVT97LUC-VOppMkknmuCytCqLQWjyGbOZlOzKTWZMMdL99M2hlt0zJIZD88ufl8RA6IfiCYCovnY6DB8KkxHtoRpgoc1ZK8Q7NMC5kjiUtD9CHEJ4wxpwIto8OipLioqjkDJ0t_CZE3WYh-sGMQVlvs_gLsnrjdNe4LEL0ugN_hN5b3QY4ft0P0c9vXx8W1_nt_dXNYn6bG17RmEurYSlJye3S1JbUBLCVVSmtEJozzG3JjakIpcQyXWOiGacUc1osK6EpcHqIPr_krn3_PECIqmuCgbbVDvohKCIIrZjAcqSn_9CnfvAuVTcqXrKCp_A3tdItqMbZPn3IjKFqzoqKESyKKql8Qq3Agddt78A26XjHf5rwZt08q210MYHSqqFrzGTq2c6DZCL8jis9hKBufnzftV_-b-cPj4u7SW18H4IHq9a-6bTfKILVOEdqa46S_vja2WHZQf1m_w5OAucvIKQrtwK_1fqJvD-os8wC</recordid><startdate>20150917</startdate><enddate>20150917</enddate><creator>Reubold, Thomas F.</creator><creator>Faelber, Katja</creator><creator>Plattner, Nuria</creator><creator>Posor, York</creator><creator>Ketel, Katharina</creator><creator>Curth, Ute</creator><creator>Schlegel, Jeanette</creator><creator>Anand, Roopsee</creator><creator>Manstein, Dietmar J.</creator><creator>Noé, Frank</creator><creator>Haucke, Volker</creator><creator>Daumke, Oliver</creator><creator>Eschenburg, Susanne</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>ATWCN</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7RV</scope><scope>7SN</scope><scope>7SS</scope><scope>7ST</scope><scope>7T5</scope><scope>7TG</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>88G</scope><scope>88I</scope><scope>8AF</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>KB0</scope><scope>KL.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M2M</scope><scope>M2O</scope><scope>M2P</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PATMY</scope><scope>PCBAR</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PSYQQ</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>Q9U</scope><scope>R05</scope><scope>RC3</scope><scope>S0X</scope><scope>SOI</scope><scope>7X8</scope></search><sort><creationdate>20150917</creationdate><title>Crystal structure of the dynamin tetramer</title><author>Reubold, Thomas F. ; Faelber, Katja ; Plattner, Nuria ; Posor, York ; Ketel, Katharina ; Curth, Ute ; Schlegel, Jeanette ; Anand, Roopsee ; Manstein, Dietmar J. ; Noé, Frank ; Haucke, Volker ; Daumke, Oliver ; Eschenburg, Susanne</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c593t-8faeb8165fbcdf1d1e0f8968f77a5405f65cc91331f4ad01a45330532b97a3e53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>13/89</topic><topic>14/19</topic><topic>14/28</topic><topic>14/35</topic><topic>631/45/612</topic><topic>631/535/1266</topic><topic>631/80/313/2377</topic><topic>82/16</topic><topic>82/29</topic><topic>82/83</topic><topic>Analysis</topic><topic>Charcot-Marie-Tooth Disease</topic><topic>Crystal structure</topic><topic>Crystallography, X-Ray</topic><topic>Crystals</topic><topic>Dynamins - antagonists &amp; inhibitors</topic><topic>Dynamins - chemistry</topic><topic>Dynamins - genetics</topic><topic>Dynamins - metabolism</topic><topic>Humanities and Social Sciences</topic><topic>Humans</topic><topic>letter</topic><topic>Markov Chains</topic><topic>Markov processes</topic><topic>Membranes</topic><topic>Models, Molecular</topic><topic>Molecular dynamics</topic><topic>Molecular Dynamics Simulation</topic><topic>multidisciplinary</topic><topic>Mutant Proteins - antagonists &amp; inhibitors</topic><topic>Mutant Proteins - chemistry</topic><topic>Mutant Proteins - genetics</topic><topic>Mutant Proteins - metabolism</topic><topic>Mutation</topic><topic>Mutation - genetics</topic><topic>Myopathies, Structural, Congenital</topic><topic>Nucleotides</topic><topic>Oligomers</topic><topic>Protein Multimerization - genetics</topic><topic>Proteins</topic><topic>Science</topic><topic>Structure</topic><topic>Structure-Activity Relationship</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Reubold, Thomas F.</creatorcontrib><creatorcontrib>Faelber, Katja</creatorcontrib><creatorcontrib>Plattner, Nuria</creatorcontrib><creatorcontrib>Posor, York</creatorcontrib><creatorcontrib>Ketel, Katharina</creatorcontrib><creatorcontrib>Curth, Ute</creatorcontrib><creatorcontrib>Schlegel, Jeanette</creatorcontrib><creatorcontrib>Anand, Roopsee</creatorcontrib><creatorcontrib>Manstein, Dietmar J.</creatorcontrib><creatorcontrib>Noé, Frank</creatorcontrib><creatorcontrib>Haucke, Volker</creatorcontrib><creatorcontrib>Daumke, Oliver</creatorcontrib><creatorcontrib>Eschenburg, Susanne</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Middle School</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Nursing &amp; Allied Health Database</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Environment Abstracts</collection><collection>Immunology Abstracts</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Psychology Database (Alumni)</collection><collection>Science Database (Alumni Edition)</collection><collection>STEM Database</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>eLibrary</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>Nursing &amp; Allied Health Database (Alumni Edition)</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Agricultural Science Database</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>ProQuest Psychology</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Nursing &amp; Allied Health Premium</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Earth, Atmospheric &amp; Aquatic Science Database</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest One Psychology</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><collection>University of Michigan</collection><collection>Genetics Abstracts</collection><collection>SIRS Editorial</collection><collection>Environment Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Nature (London)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Reubold, Thomas F.</au><au>Faelber, Katja</au><au>Plattner, Nuria</au><au>Posor, York</au><au>Ketel, Katharina</au><au>Curth, Ute</au><au>Schlegel, Jeanette</au><au>Anand, Roopsee</au><au>Manstein, Dietmar J.</au><au>Noé, Frank</au><au>Haucke, Volker</au><au>Daumke, Oliver</au><au>Eschenburg, Susanne</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Crystal structure of the dynamin tetramer</atitle><jtitle>Nature (London)</jtitle><stitle>Nature</stitle><addtitle>Nature</addtitle><date>2015-09-17</date><risdate>2015</risdate><volume>525</volume><issue>7569</issue><spage>404</spage><epage>408</epage><pages>404-408</pages><issn>0028-0836</issn><eissn>1476-4687</eissn><coden>NATUAS</coden><abstract>The crystal structure of the large GTPase dynamin tetramer is presented, suggesting a mechanism by which oligomerization of dynamin is regulated, and revealing how mutations that interfere with tetramer formation and autoinhibition are of relevance to understanding the congenital muscle disorders Charcot–Marie–Tooth neuropathy and centronuclear myopathy. Structure of a dynamin GTPases The large GTPase enzyme dynamin mediates the shaping and remodelling of the membranes of various organelles. To do this it forms mainly tetramers, which assemble into oligomers for subsequent constriction and scission of membranes. A new study presents the crystal structure of a dynamin tetramer. Combining this information with additional analysis, Susanne Eschenburg and co-workers identify interfaces between dynamin dimers and propose a mechanism for how oligomerization of this protein might lead to the release of intramolecular, autoinhibitory interactions. The authors' mutational analyses are of relevance to understanding the congenital muscle disorders Charcot–Marie–Tooth neuropathy and centronuclear myopathy. The mechanochemical protein dynamin is the prototype of the dynamin superfamily of large GTPases, which shape and remodel membranes in diverse cellular processes 1 . Dynamin forms predominantly tetramers in the cytosol, which oligomerize at the neck of clathrin-coated vesicles to mediate constriction and subsequent scission of the membrane 1 . Previous studies have described the architecture of dynamin dimers 2 , 3 , but the molecular determinants for dynamin assembly and its regulation have remained unclear. Here we present the crystal structure of the human dynamin tetramer in the nucleotide-free state. Combining structural data with mutational studies, oligomerization measurements and Markov state models of molecular dynamics simulations, we suggest a mechanism by which oligomerization of dynamin is linked to the release of intramolecular autoinhibitory interactions. We elucidate how mutations that interfere with tetramer formation and autoinhibition can lead to the congenital muscle disorders Charcot–Marie–Tooth neuropathy 4 and centronuclear myopathy 5 , respectively. Notably, the bent shape of the tetramer explains how dynamin assembles into a right-handed helical oligomer of defined diameter, which has direct implications for its function in membrane constriction.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>26302298</pmid><doi>10.1038/nature14880</doi><tpages>5</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0028-0836
ispartof Nature (London), 2015-09, Vol.525 (7569), p.404-408
issn 0028-0836
1476-4687
language eng
recordid cdi_proquest_miscellaneous_1713947085
source MEDLINE; Nature Journals Online; SpringerLink Journals - AutoHoldings
subjects 13/89
14/19
14/28
14/35
631/45/612
631/535/1266
631/80/313/2377
82/16
82/29
82/83
Analysis
Charcot-Marie-Tooth Disease
Crystal structure
Crystallography, X-Ray
Crystals
Dynamins - antagonists & inhibitors
Dynamins - chemistry
Dynamins - genetics
Dynamins - metabolism
Humanities and Social Sciences
Humans
letter
Markov Chains
Markov processes
Membranes
Models, Molecular
Molecular dynamics
Molecular Dynamics Simulation
multidisciplinary
Mutant Proteins - antagonists & inhibitors
Mutant Proteins - chemistry
Mutant Proteins - genetics
Mutant Proteins - metabolism
Mutation
Mutation - genetics
Myopathies, Structural, Congenital
Nucleotides
Oligomers
Protein Multimerization - genetics
Proteins
Science
Structure
Structure-Activity Relationship
title Crystal structure of the dynamin tetramer
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-28T14%3A25%3A39IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Crystal%20structure%20of%20the%20dynamin%20tetramer&rft.jtitle=Nature%20(London)&rft.au=Reubold,%20Thomas%20F.&rft.date=2015-09-17&rft.volume=525&rft.issue=7569&rft.spage=404&rft.epage=408&rft.pages=404-408&rft.issn=0028-0836&rft.eissn=1476-4687&rft.coden=NATUAS&rft_id=info:doi/10.1038/nature14880&rft_dat=%3Cgale_proqu%3EA429410729%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1715642553&rft_id=info:pmid/26302298&rft_galeid=A429410729&rfr_iscdi=true