MicroRNA-based conversion of human fibroblasts into striatal medium spiny neurons
In this protocol, neuronal miRNAs and transcription factors are used to directly convert human fibroblasts to striatal medium spiny neurons, a neuronal subtype important in motor control and the main cell type affected in Huntington's disease. The ability to generate human neurons of specific s...
Gespeichert in:
Veröffentlicht in: | Nature protocols 2015-10, Vol.10 (10), p.1543-1555 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1555 |
---|---|
container_issue | 10 |
container_start_page | 1543 |
container_title | Nature protocols |
container_volume | 10 |
creator | Richner, Michelle Victor, Matheus B Liu, Yangjian Abernathy, Daniel Yoo, Andrew S |
description | In this protocol, neuronal miRNAs and transcription factors are used to directly convert human fibroblasts to striatal medium spiny neurons, a neuronal subtype important in motor control and the main cell type affected in Huntington's disease.
The ability to generate human neurons of specific subtypes of clinical importance offers experimental platforms that may be instrumental for disease modeling. We recently published a study demonstrating the use of neuronal microRNAs (miRNAs) and transcription factors to directly convert human fibroblasts to a highly enriched population of striatal medium spiny neurons (MSNs), a neuronal subpopulation that has a crucial role in motor control and harbors selective susceptibility to cell death in Huntington's disease. Here we describe a stepwise protocol for the generation of MSNs by direct neuronal conversion of human fibroblasts in 30 d. We provide descriptions of cellular behaviors during reprogramming and crucial steps involved in gene delivery, cell adhesion and culturing conditions that promote cell survival. Our protocol offers a unique approach to combine microRNAs and transcription factors to guide the neuronal conversion of human fibroblasts toward a specific neuronal subtype. |
doi_str_mv | 10.1038/nprot.2015.102 |
format | Article |
fullrecord | <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_1713942938</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A430548770</galeid><sourcerecordid>A430548770</sourcerecordid><originalsourceid>FETCH-LOGICAL-c500t-78ac450d47e4979f65159a13ea2ae62a9ad82aee3eebc7ff5ce0af02c4dcd7013</originalsourceid><addsrcrecordid>eNp1kstvEzEQxlcIRB9w5YhW4kJVbepnvD5GEdBKpYhSxNHyesfB1a4dbC-i_z1OUx5BQT7YY_9mNP7mq6oXGM0wou2ZX8eQZwRhXmLyqDrEgqOGCCkf359ZQ3ArD6qjlG4RYoLOxdPqgMypkIS0h9XH987EcH21aDqdoK9N8N8hJhd8HWz9dRq1r63rYugGnXKqnc-hTjk6nfVQj9C7aazT2vm72sMUg0_PqidWDwmeP-zH1ee3b26W583lh3cXy8VlYzhCuRGtNoyjnglgUkg755hLjSloomFOtNR9W05AATojrOUGkLaIGNabXiBMj6vX27pFgW8TpKxGlwwMg_YQpqSwwFQyImlb0Ff_oLdhir50t6UEF4T8oVZ6AOW8DTlqsymqFowizlohUKFme6iyehhdUQ-sK_c7CSc7CYXJ8COv9JSSuvh0vcue_p9d3HxZXu1tpUwwpQhWraMbdbxTGKmNO9S9O9TGHSXe_PDlgw5TV0b3G_9lhwKcbYFUnvwK4l9C7S_5EwPbw3g</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1713975722</pqid></control><display><type>article</type><title>MicroRNA-based conversion of human fibroblasts into striatal medium spiny neurons</title><source>MEDLINE</source><source>Springer Nature - Complete Springer Journals</source><source>Nature Journals Online</source><creator>Richner, Michelle ; Victor, Matheus B ; Liu, Yangjian ; Abernathy, Daniel ; Yoo, Andrew S</creator><creatorcontrib>Richner, Michelle ; Victor, Matheus B ; Liu, Yangjian ; Abernathy, Daniel ; Yoo, Andrew S</creatorcontrib><description>In this protocol, neuronal miRNAs and transcription factors are used to directly convert human fibroblasts to striatal medium spiny neurons, a neuronal subtype important in motor control and the main cell type affected in Huntington's disease.
The ability to generate human neurons of specific subtypes of clinical importance offers experimental platforms that may be instrumental for disease modeling. We recently published a study demonstrating the use of neuronal microRNAs (miRNAs) and transcription factors to directly convert human fibroblasts to a highly enriched population of striatal medium spiny neurons (MSNs), a neuronal subpopulation that has a crucial role in motor control and harbors selective susceptibility to cell death in Huntington's disease. Here we describe a stepwise protocol for the generation of MSNs by direct neuronal conversion of human fibroblasts in 30 d. We provide descriptions of cellular behaviors during reprogramming and crucial steps involved in gene delivery, cell adhesion and culturing conditions that promote cell survival. Our protocol offers a unique approach to combine microRNAs and transcription factors to guide the neuronal conversion of human fibroblasts toward a specific neuronal subtype.</description><identifier>ISSN: 1754-2189</identifier><identifier>EISSN: 1750-2799</identifier><identifier>DOI: 10.1038/nprot.2015.102</identifier><identifier>PMID: 26379228</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>13/1 ; 13/107 ; 13/109 ; 13/44 ; 13/51 ; 631/1647/1407/651 ; 631/1647/2300/1850 ; 631/378/340 ; 631/532/2128 ; Analytical Chemistry ; Animals ; Antibiotics ; Biological Techniques ; Biology ; Cell Adhesion ; Cell Culture Techniques - methods ; Cell Differentiation ; Computational Biology/Bioinformatics ; Efficiency ; Fibroblasts ; Fibroblasts - cytology ; Humans ; Huntingtons disease ; Life Sciences ; Microarrays ; MicroRNA ; MicroRNAs ; MicroRNAs - genetics ; MicroRNAs - metabolism ; Neurons ; Neurons - cytology ; Organic Chemistry ; protocol ; Stem cells ; Transcription factors</subject><ispartof>Nature protocols, 2015-10, Vol.10 (10), p.1543-1555</ispartof><rights>Springer Nature Limited 2015</rights><rights>COPYRIGHT 2015 Nature Publishing Group</rights><rights>Copyright Nature Publishing Group Oct 2015</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c500t-78ac450d47e4979f65159a13ea2ae62a9ad82aee3eebc7ff5ce0af02c4dcd7013</citedby><cites>FETCH-LOGICAL-c500t-78ac450d47e4979f65159a13ea2ae62a9ad82aee3eebc7ff5ce0af02c4dcd7013</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1038/nprot.2015.102$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1038/nprot.2015.102$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,777,781,27905,27906,41469,42538,51300</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/26379228$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Richner, Michelle</creatorcontrib><creatorcontrib>Victor, Matheus B</creatorcontrib><creatorcontrib>Liu, Yangjian</creatorcontrib><creatorcontrib>Abernathy, Daniel</creatorcontrib><creatorcontrib>Yoo, Andrew S</creatorcontrib><title>MicroRNA-based conversion of human fibroblasts into striatal medium spiny neurons</title><title>Nature protocols</title><addtitle>Nat Protoc</addtitle><addtitle>Nat Protoc</addtitle><description>In this protocol, neuronal miRNAs and transcription factors are used to directly convert human fibroblasts to striatal medium spiny neurons, a neuronal subtype important in motor control and the main cell type affected in Huntington's disease.
The ability to generate human neurons of specific subtypes of clinical importance offers experimental platforms that may be instrumental for disease modeling. We recently published a study demonstrating the use of neuronal microRNAs (miRNAs) and transcription factors to directly convert human fibroblasts to a highly enriched population of striatal medium spiny neurons (MSNs), a neuronal subpopulation that has a crucial role in motor control and harbors selective susceptibility to cell death in Huntington's disease. Here we describe a stepwise protocol for the generation of MSNs by direct neuronal conversion of human fibroblasts in 30 d. We provide descriptions of cellular behaviors during reprogramming and crucial steps involved in gene delivery, cell adhesion and culturing conditions that promote cell survival. Our protocol offers a unique approach to combine microRNAs and transcription factors to guide the neuronal conversion of human fibroblasts toward a specific neuronal subtype.</description><subject>13/1</subject><subject>13/107</subject><subject>13/109</subject><subject>13/44</subject><subject>13/51</subject><subject>631/1647/1407/651</subject><subject>631/1647/2300/1850</subject><subject>631/378/340</subject><subject>631/532/2128</subject><subject>Analytical Chemistry</subject><subject>Animals</subject><subject>Antibiotics</subject><subject>Biological Techniques</subject><subject>Biology</subject><subject>Cell Adhesion</subject><subject>Cell Culture Techniques - methods</subject><subject>Cell Differentiation</subject><subject>Computational Biology/Bioinformatics</subject><subject>Efficiency</subject><subject>Fibroblasts</subject><subject>Fibroblasts - cytology</subject><subject>Humans</subject><subject>Huntingtons disease</subject><subject>Life Sciences</subject><subject>Microarrays</subject><subject>MicroRNA</subject><subject>MicroRNAs</subject><subject>MicroRNAs - genetics</subject><subject>MicroRNAs - metabolism</subject><subject>Neurons</subject><subject>Neurons - cytology</subject><subject>Organic Chemistry</subject><subject>protocol</subject><subject>Stem cells</subject><subject>Transcription factors</subject><issn>1754-2189</issn><issn>1750-2799</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp1kstvEzEQxlcIRB9w5YhW4kJVbepnvD5GEdBKpYhSxNHyesfB1a4dbC-i_z1OUx5BQT7YY_9mNP7mq6oXGM0wou2ZX8eQZwRhXmLyqDrEgqOGCCkf359ZQ3ArD6qjlG4RYoLOxdPqgMypkIS0h9XH987EcH21aDqdoK9N8N8hJhd8HWz9dRq1r63rYugGnXKqnc-hTjk6nfVQj9C7aazT2vm72sMUg0_PqidWDwmeP-zH1ee3b26W583lh3cXy8VlYzhCuRGtNoyjnglgUkg755hLjSloomFOtNR9W05AATojrOUGkLaIGNabXiBMj6vX27pFgW8TpKxGlwwMg_YQpqSwwFQyImlb0Ff_oLdhir50t6UEF4T8oVZ6AOW8DTlqsymqFowizlohUKFme6iyehhdUQ-sK_c7CSc7CYXJ8COv9JSSuvh0vcue_p9d3HxZXu1tpUwwpQhWraMbdbxTGKmNO9S9O9TGHSXe_PDlgw5TV0b3G_9lhwKcbYFUnvwK4l9C7S_5EwPbw3g</recordid><startdate>20151001</startdate><enddate>20151001</enddate><creator>Richner, Michelle</creator><creator>Victor, Matheus B</creator><creator>Liu, Yangjian</creator><creator>Abernathy, Daniel</creator><creator>Yoo, Andrew S</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>ATWCN</scope><scope>ISR</scope><scope>3V.</scope><scope>7QG</scope><scope>7T5</scope><scope>7T7</scope><scope>7TM</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>P64</scope><scope>PATMY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PYCSY</scope><scope>RC3</scope><scope>7X8</scope></search><sort><creationdate>20151001</creationdate><title>MicroRNA-based conversion of human fibroblasts into striatal medium spiny neurons</title><author>Richner, Michelle ; Victor, Matheus B ; Liu, Yangjian ; Abernathy, Daniel ; Yoo, Andrew S</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c500t-78ac450d47e4979f65159a13ea2ae62a9ad82aee3eebc7ff5ce0af02c4dcd7013</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>13/1</topic><topic>13/107</topic><topic>13/109</topic><topic>13/44</topic><topic>13/51</topic><topic>631/1647/1407/651</topic><topic>631/1647/2300/1850</topic><topic>631/378/340</topic><topic>631/532/2128</topic><topic>Analytical Chemistry</topic><topic>Animals</topic><topic>Antibiotics</topic><topic>Biological Techniques</topic><topic>Biology</topic><topic>Cell Adhesion</topic><topic>Cell Culture Techniques - methods</topic><topic>Cell Differentiation</topic><topic>Computational Biology/Bioinformatics</topic><topic>Efficiency</topic><topic>Fibroblasts</topic><topic>Fibroblasts - cytology</topic><topic>Humans</topic><topic>Huntingtons disease</topic><topic>Life Sciences</topic><topic>Microarrays</topic><topic>MicroRNA</topic><topic>MicroRNAs</topic><topic>MicroRNAs - genetics</topic><topic>MicroRNAs - metabolism</topic><topic>Neurons</topic><topic>Neurons - cytology</topic><topic>Organic Chemistry</topic><topic>protocol</topic><topic>Stem cells</topic><topic>Transcription factors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Richner, Michelle</creatorcontrib><creatorcontrib>Victor, Matheus B</creatorcontrib><creatorcontrib>Liu, Yangjian</creatorcontrib><creatorcontrib>Abernathy, Daniel</creatorcontrib><creatorcontrib>Yoo, Andrew S</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Middle School</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Immunology Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Nucleic Acids Abstracts</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Environmental Science Collection</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Nature protocols</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Richner, Michelle</au><au>Victor, Matheus B</au><au>Liu, Yangjian</au><au>Abernathy, Daniel</au><au>Yoo, Andrew S</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>MicroRNA-based conversion of human fibroblasts into striatal medium spiny neurons</atitle><jtitle>Nature protocols</jtitle><stitle>Nat Protoc</stitle><addtitle>Nat Protoc</addtitle><date>2015-10-01</date><risdate>2015</risdate><volume>10</volume><issue>10</issue><spage>1543</spage><epage>1555</epage><pages>1543-1555</pages><issn>1754-2189</issn><eissn>1750-2799</eissn><abstract>In this protocol, neuronal miRNAs and transcription factors are used to directly convert human fibroblasts to striatal medium spiny neurons, a neuronal subtype important in motor control and the main cell type affected in Huntington's disease.
The ability to generate human neurons of specific subtypes of clinical importance offers experimental platforms that may be instrumental for disease modeling. We recently published a study demonstrating the use of neuronal microRNAs (miRNAs) and transcription factors to directly convert human fibroblasts to a highly enriched population of striatal medium spiny neurons (MSNs), a neuronal subpopulation that has a crucial role in motor control and harbors selective susceptibility to cell death in Huntington's disease. Here we describe a stepwise protocol for the generation of MSNs by direct neuronal conversion of human fibroblasts in 30 d. We provide descriptions of cellular behaviors during reprogramming and crucial steps involved in gene delivery, cell adhesion and culturing conditions that promote cell survival. Our protocol offers a unique approach to combine microRNAs and transcription factors to guide the neuronal conversion of human fibroblasts toward a specific neuronal subtype.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>26379228</pmid><doi>10.1038/nprot.2015.102</doi><tpages>13</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1754-2189 |
ispartof | Nature protocols, 2015-10, Vol.10 (10), p.1543-1555 |
issn | 1754-2189 1750-2799 |
language | eng |
recordid | cdi_proquest_miscellaneous_1713942938 |
source | MEDLINE; Springer Nature - Complete Springer Journals; Nature Journals Online |
subjects | 13/1 13/107 13/109 13/44 13/51 631/1647/1407/651 631/1647/2300/1850 631/378/340 631/532/2128 Analytical Chemistry Animals Antibiotics Biological Techniques Biology Cell Adhesion Cell Culture Techniques - methods Cell Differentiation Computational Biology/Bioinformatics Efficiency Fibroblasts Fibroblasts - cytology Humans Huntingtons disease Life Sciences Microarrays MicroRNA MicroRNAs MicroRNAs - genetics MicroRNAs - metabolism Neurons Neurons - cytology Organic Chemistry protocol Stem cells Transcription factors |
title | MicroRNA-based conversion of human fibroblasts into striatal medium spiny neurons |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-19T17%3A49%3A57IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=MicroRNA-based%20conversion%20of%20human%20fibroblasts%20into%20striatal%20medium%20spiny%20neurons&rft.jtitle=Nature%20protocols&rft.au=Richner,%20Michelle&rft.date=2015-10-01&rft.volume=10&rft.issue=10&rft.spage=1543&rft.epage=1555&rft.pages=1543-1555&rft.issn=1754-2189&rft.eissn=1750-2799&rft_id=info:doi/10.1038/nprot.2015.102&rft_dat=%3Cgale_proqu%3EA430548770%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1713975722&rft_id=info:pmid/26379228&rft_galeid=A430548770&rfr_iscdi=true |