Hybrid bioinorganic approach to solar-to-chemical conversion
Natural photosynthesis harnesses solar energy to convert CO₂ and water to value-added chemical products for sustaining life. We present a hybrid bioinorganic approach to solar-to-chemical conversion in which sustainable electrical and/or solar input drives production of hydrogen from water splitting...
Gespeichert in:
Veröffentlicht in: | Proceedings of the National Academy of Sciences - PNAS 2015-09, Vol.112 (37), p.11461-11466 |
---|---|
Hauptverfasser: | , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 11466 |
---|---|
container_issue | 37 |
container_start_page | 11461 |
container_title | Proceedings of the National Academy of Sciences - PNAS |
container_volume | 112 |
creator | Nichols, Eva M. Gallagher, Joseph J. Liu, Chong Su, Yude Resasco, Joaquin Yu, Yi Sun, Yujie Yang, Peidong Chang, Michelle C. Y. Chang, Christopher J. |
description | Natural photosynthesis harnesses solar energy to convert CO₂ and water to value-added chemical products for sustaining life. We present a hybrid bioinorganic approach to solar-to-chemical conversion in which sustainable electrical and/or solar input drives production of hydrogen from water splitting using biocompatible inorganic catalysts. The hydrogen is then used by living cells as a source of reducing equivalents for conversion of CO₂ to the value-added chemical product methane. Using platinum or an earth-abundant substitute, α-NiS, as biocompatible hydrogen evolution reaction (HER) electrocatalysts andMethanosarcina barkerias a biocatalyst for CO₂ fixation, we demonstrate robust and efficient electrochemical CO₂ to CH₄ conversion at up to 86% overall Faradaic efficiency for ≥7 d. Introduction of indium phosphide photocathodes and titanium dioxide photoanodes affords a fully solar-driven system for methane generation from water and CO₂, establishing that compatible inorganic and biological components can synergistically couple light-harvesting and catalytic functions for solar-to-chemical conversion. |
doi_str_mv | 10.1073/pnas.1508075112 |
format | Article |
fullrecord | <record><control><sourceid>jstor_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_1713527353</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>26465040</jstor_id><sourcerecordid>26465040</sourcerecordid><originalsourceid>FETCH-LOGICAL-c463t-60ac4a6c4702dae277657d6aff8e8e0b0f7e8b36748441a7cc26dbe2a3439563</originalsourceid><addsrcrecordid>eNpVkU1P3DAQhq0KBAvtuSdQ1BOXwPhzEgkhVagtlZC4cLccx2GNsnawvUj8-2a1y0JPc5hnnpnRS8h3CpcUkF9NweRLKqEBlJSyL2RBoaW1Ei0ckAUAw7oRTByTk5yfAaCVDRyRY6Y4yFbgglzfvXXJ91Xnow8xPZngbWWmKUVjl1WJVY6jSXWJtV26lbdmrGwMry5lH8NXcjiYMbtvu3pKHn__ery9q-8f_vy9_XlfW6F4qRUYK4yyAoH1xjFEJbFXZhga1zjoYEDXdFyhaISgBq1lqu8cM1zwVip-Sm622mndrVxvXSjJjHpKfmXSm47G6_87wS_1U3zVQiJSxFnwYyuIuXidrS_OLuc3grNFU8Yl5e0MXey2pPiydrnolc_WjaMJLq6zpki5ZMgln9GrLWpTzDm5YX8LBb3JRW9y0R-5zBPnn1_Y8-9BzEC1AzaTex1lmuNchKIzcrZFnnOJ6ZNCKAkC-D_p9Z3D</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1713527353</pqid></control><display><type>article</type><title>Hybrid bioinorganic approach to solar-to-chemical conversion</title><source>Jstor Complete Legacy</source><source>MEDLINE</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><source>Free Full-Text Journals in Chemistry</source><creator>Nichols, Eva M. ; Gallagher, Joseph J. ; Liu, Chong ; Su, Yude ; Resasco, Joaquin ; Yu, Yi ; Sun, Yujie ; Yang, Peidong ; Chang, Michelle C. Y. ; Chang, Christopher J.</creator><creatorcontrib>Nichols, Eva M. ; Gallagher, Joseph J. ; Liu, Chong ; Su, Yude ; Resasco, Joaquin ; Yu, Yi ; Sun, Yujie ; Yang, Peidong ; Chang, Michelle C. Y. ; Chang, Christopher J.</creatorcontrib><description>Natural photosynthesis harnesses solar energy to convert CO₂ and water to value-added chemical products for sustaining life. We present a hybrid bioinorganic approach to solar-to-chemical conversion in which sustainable electrical and/or solar input drives production of hydrogen from water splitting using biocompatible inorganic catalysts. The hydrogen is then used by living cells as a source of reducing equivalents for conversion of CO₂ to the value-added chemical product methane. Using platinum or an earth-abundant substitute, α-NiS, as biocompatible hydrogen evolution reaction (HER) electrocatalysts andMethanosarcina barkerias a biocatalyst for CO₂ fixation, we demonstrate robust and efficient electrochemical CO₂ to CH₄ conversion at up to 86% overall Faradaic efficiency for ≥7 d. Introduction of indium phosphide photocathodes and titanium dioxide photoanodes affords a fully solar-driven system for methane generation from water and CO₂, establishing that compatible inorganic and biological components can synergistically couple light-harvesting and catalytic functions for solar-to-chemical conversion.</description><identifier>ISSN: 0027-8424</identifier><identifier>EISSN: 1091-6490</identifier><identifier>DOI: 10.1073/pnas.1508075112</identifier><identifier>PMID: 26305947</identifier><language>eng</language><publisher>United States: National Academy of Sciences</publisher><subject>Carbon Dioxide - chemistry ; Catalysis ; Electrolysis ; Hydrogen - chemistry ; Light ; Materials Testing ; Methane - chemistry ; Methanosarcina barkeri - metabolism ; Photosynthesis ; Physical Sciences ; Silicon - chemistry ; Solar Energy ; Sunlight ; Temperature ; Water - chemistry</subject><ispartof>Proceedings of the National Academy of Sciences - PNAS, 2015-09, Vol.112 (37), p.11461-11466</ispartof><rights>Volumes 1–89 and 106–112, copyright as a collective work only; author(s) retains copyright to individual articles</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c463t-60ac4a6c4702dae277657d6aff8e8e0b0f7e8b36748441a7cc26dbe2a3439563</citedby><cites>FETCH-LOGICAL-c463t-60ac4a6c4702dae277657d6aff8e8e0b0f7e8b36748441a7cc26dbe2a3439563</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttp://www.pnas.org/content/112/37.cover.gif</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/26465040$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/26465040$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,723,776,780,799,881,27903,27904,53769,53771,57995,58228</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/26305947$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/biblio/1235139$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Nichols, Eva M.</creatorcontrib><creatorcontrib>Gallagher, Joseph J.</creatorcontrib><creatorcontrib>Liu, Chong</creatorcontrib><creatorcontrib>Su, Yude</creatorcontrib><creatorcontrib>Resasco, Joaquin</creatorcontrib><creatorcontrib>Yu, Yi</creatorcontrib><creatorcontrib>Sun, Yujie</creatorcontrib><creatorcontrib>Yang, Peidong</creatorcontrib><creatorcontrib>Chang, Michelle C. Y.</creatorcontrib><creatorcontrib>Chang, Christopher J.</creatorcontrib><title>Hybrid bioinorganic approach to solar-to-chemical conversion</title><title>Proceedings of the National Academy of Sciences - PNAS</title><addtitle>Proc Natl Acad Sci U S A</addtitle><description>Natural photosynthesis harnesses solar energy to convert CO₂ and water to value-added chemical products for sustaining life. We present a hybrid bioinorganic approach to solar-to-chemical conversion in which sustainable electrical and/or solar input drives production of hydrogen from water splitting using biocompatible inorganic catalysts. The hydrogen is then used by living cells as a source of reducing equivalents for conversion of CO₂ to the value-added chemical product methane. Using platinum or an earth-abundant substitute, α-NiS, as biocompatible hydrogen evolution reaction (HER) electrocatalysts andMethanosarcina barkerias a biocatalyst for CO₂ fixation, we demonstrate robust and efficient electrochemical CO₂ to CH₄ conversion at up to 86% overall Faradaic efficiency for ≥7 d. Introduction of indium phosphide photocathodes and titanium dioxide photoanodes affords a fully solar-driven system for methane generation from water and CO₂, establishing that compatible inorganic and biological components can synergistically couple light-harvesting and catalytic functions for solar-to-chemical conversion.</description><subject>Carbon Dioxide - chemistry</subject><subject>Catalysis</subject><subject>Electrolysis</subject><subject>Hydrogen - chemistry</subject><subject>Light</subject><subject>Materials Testing</subject><subject>Methane - chemistry</subject><subject>Methanosarcina barkeri - metabolism</subject><subject>Photosynthesis</subject><subject>Physical Sciences</subject><subject>Silicon - chemistry</subject><subject>Solar Energy</subject><subject>Sunlight</subject><subject>Temperature</subject><subject>Water - chemistry</subject><issn>0027-8424</issn><issn>1091-6490</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpVkU1P3DAQhq0KBAvtuSdQ1BOXwPhzEgkhVagtlZC4cLccx2GNsnawvUj8-2a1y0JPc5hnnpnRS8h3CpcUkF9NweRLKqEBlJSyL2RBoaW1Ei0ckAUAw7oRTByTk5yfAaCVDRyRY6Y4yFbgglzfvXXJ91Xnow8xPZngbWWmKUVjl1WJVY6jSXWJtV26lbdmrGwMry5lH8NXcjiYMbtvu3pKHn__ery9q-8f_vy9_XlfW6F4qRUYK4yyAoH1xjFEJbFXZhga1zjoYEDXdFyhaISgBq1lqu8cM1zwVip-Sm622mndrVxvXSjJjHpKfmXSm47G6_87wS_1U3zVQiJSxFnwYyuIuXidrS_OLuc3grNFU8Yl5e0MXey2pPiydrnolc_WjaMJLq6zpki5ZMgln9GrLWpTzDm5YX8LBb3JRW9y0R-5zBPnn1_Y8-9BzEC1AzaTex1lmuNchKIzcrZFnnOJ6ZNCKAkC-D_p9Z3D</recordid><startdate>20150915</startdate><enddate>20150915</enddate><creator>Nichols, Eva M.</creator><creator>Gallagher, Joseph J.</creator><creator>Liu, Chong</creator><creator>Su, Yude</creator><creator>Resasco, Joaquin</creator><creator>Yu, Yi</creator><creator>Sun, Yujie</creator><creator>Yang, Peidong</creator><creator>Chang, Michelle C. Y.</creator><creator>Chang, Christopher J.</creator><general>National Academy of Sciences</general><general>National Acad Sciences</general><general>Proceedings of the National Academy of Sciences</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>OTOTI</scope><scope>5PM</scope></search><sort><creationdate>20150915</creationdate><title>Hybrid bioinorganic approach to solar-to-chemical conversion</title><author>Nichols, Eva M. ; Gallagher, Joseph J. ; Liu, Chong ; Su, Yude ; Resasco, Joaquin ; Yu, Yi ; Sun, Yujie ; Yang, Peidong ; Chang, Michelle C. Y. ; Chang, Christopher J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c463t-60ac4a6c4702dae277657d6aff8e8e0b0f7e8b36748441a7cc26dbe2a3439563</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Carbon Dioxide - chemistry</topic><topic>Catalysis</topic><topic>Electrolysis</topic><topic>Hydrogen - chemistry</topic><topic>Light</topic><topic>Materials Testing</topic><topic>Methane - chemistry</topic><topic>Methanosarcina barkeri - metabolism</topic><topic>Photosynthesis</topic><topic>Physical Sciences</topic><topic>Silicon - chemistry</topic><topic>Solar Energy</topic><topic>Sunlight</topic><topic>Temperature</topic><topic>Water - chemistry</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Nichols, Eva M.</creatorcontrib><creatorcontrib>Gallagher, Joseph J.</creatorcontrib><creatorcontrib>Liu, Chong</creatorcontrib><creatorcontrib>Su, Yude</creatorcontrib><creatorcontrib>Resasco, Joaquin</creatorcontrib><creatorcontrib>Yu, Yi</creatorcontrib><creatorcontrib>Sun, Yujie</creatorcontrib><creatorcontrib>Yang, Peidong</creatorcontrib><creatorcontrib>Chang, Michelle C. Y.</creatorcontrib><creatorcontrib>Chang, Christopher J.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>OSTI.GOV</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Nichols, Eva M.</au><au>Gallagher, Joseph J.</au><au>Liu, Chong</au><au>Su, Yude</au><au>Resasco, Joaquin</au><au>Yu, Yi</au><au>Sun, Yujie</au><au>Yang, Peidong</au><au>Chang, Michelle C. Y.</au><au>Chang, Christopher J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Hybrid bioinorganic approach to solar-to-chemical conversion</atitle><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle><addtitle>Proc Natl Acad Sci U S A</addtitle><date>2015-09-15</date><risdate>2015</risdate><volume>112</volume><issue>37</issue><spage>11461</spage><epage>11466</epage><pages>11461-11466</pages><issn>0027-8424</issn><eissn>1091-6490</eissn><abstract>Natural photosynthesis harnesses solar energy to convert CO₂ and water to value-added chemical products for sustaining life. We present a hybrid bioinorganic approach to solar-to-chemical conversion in which sustainable electrical and/or solar input drives production of hydrogen from water splitting using biocompatible inorganic catalysts. The hydrogen is then used by living cells as a source of reducing equivalents for conversion of CO₂ to the value-added chemical product methane. Using platinum or an earth-abundant substitute, α-NiS, as biocompatible hydrogen evolution reaction (HER) electrocatalysts andMethanosarcina barkerias a biocatalyst for CO₂ fixation, we demonstrate robust and efficient electrochemical CO₂ to CH₄ conversion at up to 86% overall Faradaic efficiency for ≥7 d. Introduction of indium phosphide photocathodes and titanium dioxide photoanodes affords a fully solar-driven system for methane generation from water and CO₂, establishing that compatible inorganic and biological components can synergistically couple light-harvesting and catalytic functions for solar-to-chemical conversion.</abstract><cop>United States</cop><pub>National Academy of Sciences</pub><pmid>26305947</pmid><doi>10.1073/pnas.1508075112</doi><tpages>6</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0027-8424 |
ispartof | Proceedings of the National Academy of Sciences - PNAS, 2015-09, Vol.112 (37), p.11461-11466 |
issn | 0027-8424 1091-6490 |
language | eng |
recordid | cdi_proquest_miscellaneous_1713527353 |
source | Jstor Complete Legacy; MEDLINE; PubMed Central; Alma/SFX Local Collection; Free Full-Text Journals in Chemistry |
subjects | Carbon Dioxide - chemistry Catalysis Electrolysis Hydrogen - chemistry Light Materials Testing Methane - chemistry Methanosarcina barkeri - metabolism Photosynthesis Physical Sciences Silicon - chemistry Solar Energy Sunlight Temperature Water - chemistry |
title | Hybrid bioinorganic approach to solar-to-chemical conversion |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T15%3A56%3A12IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Hybrid%20bioinorganic%20approach%20to%20solar-to-chemical%20conversion&rft.jtitle=Proceedings%20of%20the%20National%20Academy%20of%20Sciences%20-%20PNAS&rft.au=Nichols,%20Eva%20M.&rft.date=2015-09-15&rft.volume=112&rft.issue=37&rft.spage=11461&rft.epage=11466&rft.pages=11461-11466&rft.issn=0027-8424&rft.eissn=1091-6490&rft_id=info:doi/10.1073/pnas.1508075112&rft_dat=%3Cjstor_proqu%3E26465040%3C/jstor_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1713527353&rft_id=info:pmid/26305947&rft_jstor_id=26465040&rfr_iscdi=true |