Hybrid bioinorganic approach to solar-to-chemical conversion

Natural photosynthesis harnesses solar energy to convert CO₂ and water to value-added chemical products for sustaining life. We present a hybrid bioinorganic approach to solar-to-chemical conversion in which sustainable electrical and/or solar input drives production of hydrogen from water splitting...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Proceedings of the National Academy of Sciences - PNAS 2015-09, Vol.112 (37), p.11461-11466
Hauptverfasser: Nichols, Eva M., Gallagher, Joseph J., Liu, Chong, Su, Yude, Resasco, Joaquin, Yu, Yi, Sun, Yujie, Yang, Peidong, Chang, Michelle C. Y., Chang, Christopher J.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 11466
container_issue 37
container_start_page 11461
container_title Proceedings of the National Academy of Sciences - PNAS
container_volume 112
creator Nichols, Eva M.
Gallagher, Joseph J.
Liu, Chong
Su, Yude
Resasco, Joaquin
Yu, Yi
Sun, Yujie
Yang, Peidong
Chang, Michelle C. Y.
Chang, Christopher J.
description Natural photosynthesis harnesses solar energy to convert CO₂ and water to value-added chemical products for sustaining life. We present a hybrid bioinorganic approach to solar-to-chemical conversion in which sustainable electrical and/or solar input drives production of hydrogen from water splitting using biocompatible inorganic catalysts. The hydrogen is then used by living cells as a source of reducing equivalents for conversion of CO₂ to the value-added chemical product methane. Using platinum or an earth-abundant substitute, α-NiS, as biocompatible hydrogen evolution reaction (HER) electrocatalysts andMethanosarcina barkerias a biocatalyst for CO₂ fixation, we demonstrate robust and efficient electrochemical CO₂ to CH₄ conversion at up to 86% overall Faradaic efficiency for ≥7 d. Introduction of indium phosphide photocathodes and titanium dioxide photoanodes affords a fully solar-driven system for methane generation from water and CO₂, establishing that compatible inorganic and biological components can synergistically couple light-harvesting and catalytic functions for solar-to-chemical conversion.
doi_str_mv 10.1073/pnas.1508075112
format Article
fullrecord <record><control><sourceid>jstor_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_1713527353</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>26465040</jstor_id><sourcerecordid>26465040</sourcerecordid><originalsourceid>FETCH-LOGICAL-c463t-60ac4a6c4702dae277657d6aff8e8e0b0f7e8b36748441a7cc26dbe2a3439563</originalsourceid><addsrcrecordid>eNpVkU1P3DAQhq0KBAvtuSdQ1BOXwPhzEgkhVagtlZC4cLccx2GNsnawvUj8-2a1y0JPc5hnnpnRS8h3CpcUkF9NweRLKqEBlJSyL2RBoaW1Ei0ckAUAw7oRTByTk5yfAaCVDRyRY6Y4yFbgglzfvXXJ91Xnow8xPZngbWWmKUVjl1WJVY6jSXWJtV26lbdmrGwMry5lH8NXcjiYMbtvu3pKHn__ery9q-8f_vy9_XlfW6F4qRUYK4yyAoH1xjFEJbFXZhga1zjoYEDXdFyhaISgBq1lqu8cM1zwVip-Sm622mndrVxvXSjJjHpKfmXSm47G6_87wS_1U3zVQiJSxFnwYyuIuXidrS_OLuc3grNFU8Yl5e0MXey2pPiydrnolc_WjaMJLq6zpki5ZMgln9GrLWpTzDm5YX8LBb3JRW9y0R-5zBPnn1_Y8-9BzEC1AzaTex1lmuNchKIzcrZFnnOJ6ZNCKAkC-D_p9Z3D</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1713527353</pqid></control><display><type>article</type><title>Hybrid bioinorganic approach to solar-to-chemical conversion</title><source>Jstor Complete Legacy</source><source>MEDLINE</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><source>Free Full-Text Journals in Chemistry</source><creator>Nichols, Eva M. ; Gallagher, Joseph J. ; Liu, Chong ; Su, Yude ; Resasco, Joaquin ; Yu, Yi ; Sun, Yujie ; Yang, Peidong ; Chang, Michelle C. Y. ; Chang, Christopher J.</creator><creatorcontrib>Nichols, Eva M. ; Gallagher, Joseph J. ; Liu, Chong ; Su, Yude ; Resasco, Joaquin ; Yu, Yi ; Sun, Yujie ; Yang, Peidong ; Chang, Michelle C. Y. ; Chang, Christopher J.</creatorcontrib><description>Natural photosynthesis harnesses solar energy to convert CO₂ and water to value-added chemical products for sustaining life. We present a hybrid bioinorganic approach to solar-to-chemical conversion in which sustainable electrical and/or solar input drives production of hydrogen from water splitting using biocompatible inorganic catalysts. The hydrogen is then used by living cells as a source of reducing equivalents for conversion of CO₂ to the value-added chemical product methane. Using platinum or an earth-abundant substitute, α-NiS, as biocompatible hydrogen evolution reaction (HER) electrocatalysts andMethanosarcina barkerias a biocatalyst for CO₂ fixation, we demonstrate robust and efficient electrochemical CO₂ to CH₄ conversion at up to 86% overall Faradaic efficiency for ≥7 d. Introduction of indium phosphide photocathodes and titanium dioxide photoanodes affords a fully solar-driven system for methane generation from water and CO₂, establishing that compatible inorganic and biological components can synergistically couple light-harvesting and catalytic functions for solar-to-chemical conversion.</description><identifier>ISSN: 0027-8424</identifier><identifier>EISSN: 1091-6490</identifier><identifier>DOI: 10.1073/pnas.1508075112</identifier><identifier>PMID: 26305947</identifier><language>eng</language><publisher>United States: National Academy of Sciences</publisher><subject>Carbon Dioxide - chemistry ; Catalysis ; Electrolysis ; Hydrogen - chemistry ; Light ; Materials Testing ; Methane - chemistry ; Methanosarcina barkeri - metabolism ; Photosynthesis ; Physical Sciences ; Silicon - chemistry ; Solar Energy ; Sunlight ; Temperature ; Water - chemistry</subject><ispartof>Proceedings of the National Academy of Sciences - PNAS, 2015-09, Vol.112 (37), p.11461-11466</ispartof><rights>Volumes 1–89 and 106–112, copyright as a collective work only; author(s) retains copyright to individual articles</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c463t-60ac4a6c4702dae277657d6aff8e8e0b0f7e8b36748441a7cc26dbe2a3439563</citedby><cites>FETCH-LOGICAL-c463t-60ac4a6c4702dae277657d6aff8e8e0b0f7e8b36748441a7cc26dbe2a3439563</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttp://www.pnas.org/content/112/37.cover.gif</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/26465040$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/26465040$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,723,776,780,799,881,27903,27904,53769,53771,57995,58228</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/26305947$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/biblio/1235139$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Nichols, Eva M.</creatorcontrib><creatorcontrib>Gallagher, Joseph J.</creatorcontrib><creatorcontrib>Liu, Chong</creatorcontrib><creatorcontrib>Su, Yude</creatorcontrib><creatorcontrib>Resasco, Joaquin</creatorcontrib><creatorcontrib>Yu, Yi</creatorcontrib><creatorcontrib>Sun, Yujie</creatorcontrib><creatorcontrib>Yang, Peidong</creatorcontrib><creatorcontrib>Chang, Michelle C. Y.</creatorcontrib><creatorcontrib>Chang, Christopher J.</creatorcontrib><title>Hybrid bioinorganic approach to solar-to-chemical conversion</title><title>Proceedings of the National Academy of Sciences - PNAS</title><addtitle>Proc Natl Acad Sci U S A</addtitle><description>Natural photosynthesis harnesses solar energy to convert CO₂ and water to value-added chemical products for sustaining life. We present a hybrid bioinorganic approach to solar-to-chemical conversion in which sustainable electrical and/or solar input drives production of hydrogen from water splitting using biocompatible inorganic catalysts. The hydrogen is then used by living cells as a source of reducing equivalents for conversion of CO₂ to the value-added chemical product methane. Using platinum or an earth-abundant substitute, α-NiS, as biocompatible hydrogen evolution reaction (HER) electrocatalysts andMethanosarcina barkerias a biocatalyst for CO₂ fixation, we demonstrate robust and efficient electrochemical CO₂ to CH₄ conversion at up to 86% overall Faradaic efficiency for ≥7 d. Introduction of indium phosphide photocathodes and titanium dioxide photoanodes affords a fully solar-driven system for methane generation from water and CO₂, establishing that compatible inorganic and biological components can synergistically couple light-harvesting and catalytic functions for solar-to-chemical conversion.</description><subject>Carbon Dioxide - chemistry</subject><subject>Catalysis</subject><subject>Electrolysis</subject><subject>Hydrogen - chemistry</subject><subject>Light</subject><subject>Materials Testing</subject><subject>Methane - chemistry</subject><subject>Methanosarcina barkeri - metabolism</subject><subject>Photosynthesis</subject><subject>Physical Sciences</subject><subject>Silicon - chemistry</subject><subject>Solar Energy</subject><subject>Sunlight</subject><subject>Temperature</subject><subject>Water - chemistry</subject><issn>0027-8424</issn><issn>1091-6490</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpVkU1P3DAQhq0KBAvtuSdQ1BOXwPhzEgkhVagtlZC4cLccx2GNsnawvUj8-2a1y0JPc5hnnpnRS8h3CpcUkF9NweRLKqEBlJSyL2RBoaW1Ei0ckAUAw7oRTByTk5yfAaCVDRyRY6Y4yFbgglzfvXXJ91Xnow8xPZngbWWmKUVjl1WJVY6jSXWJtV26lbdmrGwMry5lH8NXcjiYMbtvu3pKHn__ery9q-8f_vy9_XlfW6F4qRUYK4yyAoH1xjFEJbFXZhga1zjoYEDXdFyhaISgBq1lqu8cM1zwVip-Sm622mndrVxvXSjJjHpKfmXSm47G6_87wS_1U3zVQiJSxFnwYyuIuXidrS_OLuc3grNFU8Yl5e0MXey2pPiydrnolc_WjaMJLq6zpki5ZMgln9GrLWpTzDm5YX8LBb3JRW9y0R-5zBPnn1_Y8-9BzEC1AzaTex1lmuNchKIzcrZFnnOJ6ZNCKAkC-D_p9Z3D</recordid><startdate>20150915</startdate><enddate>20150915</enddate><creator>Nichols, Eva M.</creator><creator>Gallagher, Joseph J.</creator><creator>Liu, Chong</creator><creator>Su, Yude</creator><creator>Resasco, Joaquin</creator><creator>Yu, Yi</creator><creator>Sun, Yujie</creator><creator>Yang, Peidong</creator><creator>Chang, Michelle C. Y.</creator><creator>Chang, Christopher J.</creator><general>National Academy of Sciences</general><general>National Acad Sciences</general><general>Proceedings of the National Academy of Sciences</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>OTOTI</scope><scope>5PM</scope></search><sort><creationdate>20150915</creationdate><title>Hybrid bioinorganic approach to solar-to-chemical conversion</title><author>Nichols, Eva M. ; Gallagher, Joseph J. ; Liu, Chong ; Su, Yude ; Resasco, Joaquin ; Yu, Yi ; Sun, Yujie ; Yang, Peidong ; Chang, Michelle C. Y. ; Chang, Christopher J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c463t-60ac4a6c4702dae277657d6aff8e8e0b0f7e8b36748441a7cc26dbe2a3439563</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Carbon Dioxide - chemistry</topic><topic>Catalysis</topic><topic>Electrolysis</topic><topic>Hydrogen - chemistry</topic><topic>Light</topic><topic>Materials Testing</topic><topic>Methane - chemistry</topic><topic>Methanosarcina barkeri - metabolism</topic><topic>Photosynthesis</topic><topic>Physical Sciences</topic><topic>Silicon - chemistry</topic><topic>Solar Energy</topic><topic>Sunlight</topic><topic>Temperature</topic><topic>Water - chemistry</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Nichols, Eva M.</creatorcontrib><creatorcontrib>Gallagher, Joseph J.</creatorcontrib><creatorcontrib>Liu, Chong</creatorcontrib><creatorcontrib>Su, Yude</creatorcontrib><creatorcontrib>Resasco, Joaquin</creatorcontrib><creatorcontrib>Yu, Yi</creatorcontrib><creatorcontrib>Sun, Yujie</creatorcontrib><creatorcontrib>Yang, Peidong</creatorcontrib><creatorcontrib>Chang, Michelle C. Y.</creatorcontrib><creatorcontrib>Chang, Christopher J.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>OSTI.GOV</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Nichols, Eva M.</au><au>Gallagher, Joseph J.</au><au>Liu, Chong</au><au>Su, Yude</au><au>Resasco, Joaquin</au><au>Yu, Yi</au><au>Sun, Yujie</au><au>Yang, Peidong</au><au>Chang, Michelle C. Y.</au><au>Chang, Christopher J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Hybrid bioinorganic approach to solar-to-chemical conversion</atitle><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle><addtitle>Proc Natl Acad Sci U S A</addtitle><date>2015-09-15</date><risdate>2015</risdate><volume>112</volume><issue>37</issue><spage>11461</spage><epage>11466</epage><pages>11461-11466</pages><issn>0027-8424</issn><eissn>1091-6490</eissn><abstract>Natural photosynthesis harnesses solar energy to convert CO₂ and water to value-added chemical products for sustaining life. We present a hybrid bioinorganic approach to solar-to-chemical conversion in which sustainable electrical and/or solar input drives production of hydrogen from water splitting using biocompatible inorganic catalysts. The hydrogen is then used by living cells as a source of reducing equivalents for conversion of CO₂ to the value-added chemical product methane. Using platinum or an earth-abundant substitute, α-NiS, as biocompatible hydrogen evolution reaction (HER) electrocatalysts andMethanosarcina barkerias a biocatalyst for CO₂ fixation, we demonstrate robust and efficient electrochemical CO₂ to CH₄ conversion at up to 86% overall Faradaic efficiency for ≥7 d. Introduction of indium phosphide photocathodes and titanium dioxide photoanodes affords a fully solar-driven system for methane generation from water and CO₂, establishing that compatible inorganic and biological components can synergistically couple light-harvesting and catalytic functions for solar-to-chemical conversion.</abstract><cop>United States</cop><pub>National Academy of Sciences</pub><pmid>26305947</pmid><doi>10.1073/pnas.1508075112</doi><tpages>6</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0027-8424
ispartof Proceedings of the National Academy of Sciences - PNAS, 2015-09, Vol.112 (37), p.11461-11466
issn 0027-8424
1091-6490
language eng
recordid cdi_proquest_miscellaneous_1713527353
source Jstor Complete Legacy; MEDLINE; PubMed Central; Alma/SFX Local Collection; Free Full-Text Journals in Chemistry
subjects Carbon Dioxide - chemistry
Catalysis
Electrolysis
Hydrogen - chemistry
Light
Materials Testing
Methane - chemistry
Methanosarcina barkeri - metabolism
Photosynthesis
Physical Sciences
Silicon - chemistry
Solar Energy
Sunlight
Temperature
Water - chemistry
title Hybrid bioinorganic approach to solar-to-chemical conversion
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T15%3A56%3A12IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Hybrid%20bioinorganic%20approach%20to%20solar-to-chemical%20conversion&rft.jtitle=Proceedings%20of%20the%20National%20Academy%20of%20Sciences%20-%20PNAS&rft.au=Nichols,%20Eva%20M.&rft.date=2015-09-15&rft.volume=112&rft.issue=37&rft.spage=11461&rft.epage=11466&rft.pages=11461-11466&rft.issn=0027-8424&rft.eissn=1091-6490&rft_id=info:doi/10.1073/pnas.1508075112&rft_dat=%3Cjstor_proqu%3E26465040%3C/jstor_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1713527353&rft_id=info:pmid/26305947&rft_jstor_id=26465040&rfr_iscdi=true