A novel 3-base pair deletion of the CRYAA gene identified in a large Chinese pedigree featuring autosomal dominant congenital perinuclear cataract
Congenital cataract is caused by reduced transparency of the lens resulting from metabolic disorders during the fetal period. The disease shows great heterogeneity both clinically and genetically. We identified a 4-generation ethnic Han Chinese family affected by autosomal dominant congenital perinu...
Gespeichert in:
Veröffentlicht in: | Genetics and molecular research 2015-01, Vol.14 (1), p.426-432 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 432 |
---|---|
container_issue | 1 |
container_start_page | 426 |
container_title | Genetics and molecular research |
container_volume | 14 |
creator | Kong, X D Liu, N Shi, H R Dong, J M Zhao, Z H Liu, J Li-Ling, J Yang, Y X |
description | Congenital cataract is caused by reduced transparency of the lens resulting from metabolic disorders during the fetal period. The disease shows great heterogeneity both clinically and genetically. We identified a 4-generation ethnic Han Chinese family affected by autosomal dominant congenital perinuclear cataract. The patients underwent full clinical and ophthalmologic examinations to rule out any concomitant disorders. Blood samples were collected and genomic DNA was extracted. Potential mutations in the candidate gene alpha A crystallin (CRYAA) were screened. Prenatal diagnosis was then provided for a fetus of the affected proband by chorionic villus sampling. In all patients, DNA sequencing of the CRYAA gene revealed a novel 3-bp deletion mutation in exon 3 (c.246_248delCGC), which led to deletion of codon 117 encoding arginine (p.117delR) in the peptide chain. The same mutation was not found among unaffected and healthy individuals. Bioinformatic analysis revealed that although the c.246_248delCGC is an 'in-frame' mutation, removal of arginine resulted in a significant change in the protein structure. The fetus did not possess this mutation and was confirmed to be healthy at 1-year follow-up. A novel disease-causing mutation, c.246_248delCGC (p.117delR), of the CRYAA gene has been identified in a Chinese family with autosomal-type perinuclear congenital cataracts. This is also the first report of prenatal diagnosis of this type of congenital cataract. |
doi_str_mv | 10.4238/2015.January.23.16 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1712573342</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1660652386</sourcerecordid><originalsourceid>FETCH-LOGICAL-c380t-7369b6911f15da7f4e23e436d17e7379ca5c560e95787fd2f28346db58a090e33</originalsourceid><addsrcrecordid>eNqFkU2LFDEQhoMo7rr6BzxIjl56zEcn6T4Og58sCIt72FNTk1RmI93JmKQF_8b-YjPsKN48VVE873uoh5DXnG16IYd3gnG1-QJxhfxrI-SG6yfkkmujO6UH9vSf_YK8KOU7Y0L1A3tOLoQyYhyNuiQPWxrTT5yp7PZQkB4hZOpwxhpSpMnTeo90d3O33dIDRqTBYazBB3Q0RAp0hnxowH2IeEqjC4eMSD1CXXOIBwprTSUtMFOXlhAhVmpTbF2httsRG7TaGSFTCxUy2PqSPPMwF3x1nlfk9sP7b7tP3fXXj5932-vOyoHVzkg97vXIuefKgfE9Com91I4bNNKMFpRVmuGozGC8E14MstdurwZgI0Mpr8jbx95jTj9WLHVaQrE4zxAxrWXihrc_Sdl-_V9Ua6ZVc6IbKh5Rm1MpGf10zGFphibOppO26aRtOmubhGzhFnpz7l_3C7q_kT-e5G91xJXf</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1660652386</pqid></control><display><type>article</type><title>A novel 3-base pair deletion of the CRYAA gene identified in a large Chinese pedigree featuring autosomal dominant congenital perinuclear cataract</title><source>MEDLINE</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Kong, X D ; Liu, N ; Shi, H R ; Dong, J M ; Zhao, Z H ; Liu, J ; Li-Ling, J ; Yang, Y X</creator><creatorcontrib>Kong, X D ; Liu, N ; Shi, H R ; Dong, J M ; Zhao, Z H ; Liu, J ; Li-Ling, J ; Yang, Y X</creatorcontrib><description>Congenital cataract is caused by reduced transparency of the lens resulting from metabolic disorders during the fetal period. The disease shows great heterogeneity both clinically and genetically. We identified a 4-generation ethnic Han Chinese family affected by autosomal dominant congenital perinuclear cataract. The patients underwent full clinical and ophthalmologic examinations to rule out any concomitant disorders. Blood samples were collected and genomic DNA was extracted. Potential mutations in the candidate gene alpha A crystallin (CRYAA) were screened. Prenatal diagnosis was then provided for a fetus of the affected proband by chorionic villus sampling. In all patients, DNA sequencing of the CRYAA gene revealed a novel 3-bp deletion mutation in exon 3 (c.246_248delCGC), which led to deletion of codon 117 encoding arginine (p.117delR) in the peptide chain. The same mutation was not found among unaffected and healthy individuals. Bioinformatic analysis revealed that although the c.246_248delCGC is an 'in-frame' mutation, removal of arginine resulted in a significant change in the protein structure. The fetus did not possess this mutation and was confirmed to be healthy at 1-year follow-up. A novel disease-causing mutation, c.246_248delCGC (p.117delR), of the CRYAA gene has been identified in a Chinese family with autosomal-type perinuclear congenital cataracts. This is also the first report of prenatal diagnosis of this type of congenital cataract.</description><identifier>ISSN: 1676-5680</identifier><identifier>EISSN: 1676-5680</identifier><identifier>DOI: 10.4238/2015.January.23.16</identifier><identifier>PMID: 25729975</identifier><language>eng</language><publisher>Brazil</publisher><subject>Adult ; Asian Continental Ancestry Group - genetics ; Base Pairing - genetics ; Base Sequence ; Cataract - congenital ; Cataract - genetics ; China ; Computational Biology ; Crystallins - genetics ; Female ; Follow-Up Studies ; Genes, Dominant ; Heterozygote ; Humans ; Infant, Newborn ; Male ; Molecular Sequence Data ; Pedigree ; Sequence Deletion - genetics</subject><ispartof>Genetics and molecular research, 2015-01, Vol.14 (1), p.426-432</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c380t-7369b6911f15da7f4e23e436d17e7379ca5c560e95787fd2f28346db58a090e33</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/25729975$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Kong, X D</creatorcontrib><creatorcontrib>Liu, N</creatorcontrib><creatorcontrib>Shi, H R</creatorcontrib><creatorcontrib>Dong, J M</creatorcontrib><creatorcontrib>Zhao, Z H</creatorcontrib><creatorcontrib>Liu, J</creatorcontrib><creatorcontrib>Li-Ling, J</creatorcontrib><creatorcontrib>Yang, Y X</creatorcontrib><title>A novel 3-base pair deletion of the CRYAA gene identified in a large Chinese pedigree featuring autosomal dominant congenital perinuclear cataract</title><title>Genetics and molecular research</title><addtitle>Genet Mol Res</addtitle><description>Congenital cataract is caused by reduced transparency of the lens resulting from metabolic disorders during the fetal period. The disease shows great heterogeneity both clinically and genetically. We identified a 4-generation ethnic Han Chinese family affected by autosomal dominant congenital perinuclear cataract. The patients underwent full clinical and ophthalmologic examinations to rule out any concomitant disorders. Blood samples were collected and genomic DNA was extracted. Potential mutations in the candidate gene alpha A crystallin (CRYAA) were screened. Prenatal diagnosis was then provided for a fetus of the affected proband by chorionic villus sampling. In all patients, DNA sequencing of the CRYAA gene revealed a novel 3-bp deletion mutation in exon 3 (c.246_248delCGC), which led to deletion of codon 117 encoding arginine (p.117delR) in the peptide chain. The same mutation was not found among unaffected and healthy individuals. Bioinformatic analysis revealed that although the c.246_248delCGC is an 'in-frame' mutation, removal of arginine resulted in a significant change in the protein structure. The fetus did not possess this mutation and was confirmed to be healthy at 1-year follow-up. A novel disease-causing mutation, c.246_248delCGC (p.117delR), of the CRYAA gene has been identified in a Chinese family with autosomal-type perinuclear congenital cataracts. This is also the first report of prenatal diagnosis of this type of congenital cataract.</description><subject>Adult</subject><subject>Asian Continental Ancestry Group - genetics</subject><subject>Base Pairing - genetics</subject><subject>Base Sequence</subject><subject>Cataract - congenital</subject><subject>Cataract - genetics</subject><subject>China</subject><subject>Computational Biology</subject><subject>Crystallins - genetics</subject><subject>Female</subject><subject>Follow-Up Studies</subject><subject>Genes, Dominant</subject><subject>Heterozygote</subject><subject>Humans</subject><subject>Infant, Newborn</subject><subject>Male</subject><subject>Molecular Sequence Data</subject><subject>Pedigree</subject><subject>Sequence Deletion - genetics</subject><issn>1676-5680</issn><issn>1676-5680</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkU2LFDEQhoMo7rr6BzxIjl56zEcn6T4Og58sCIt72FNTk1RmI93JmKQF_8b-YjPsKN48VVE873uoh5DXnG16IYd3gnG1-QJxhfxrI-SG6yfkkmujO6UH9vSf_YK8KOU7Y0L1A3tOLoQyYhyNuiQPWxrTT5yp7PZQkB4hZOpwxhpSpMnTeo90d3O33dIDRqTBYazBB3Q0RAp0hnxowH2IeEqjC4eMSD1CXXOIBwprTSUtMFOXlhAhVmpTbF2httsRG7TaGSFTCxUy2PqSPPMwF3x1nlfk9sP7b7tP3fXXj5932-vOyoHVzkg97vXIuefKgfE9Com91I4bNNKMFpRVmuGozGC8E14MstdurwZgI0Mpr8jbx95jTj9WLHVaQrE4zxAxrWXihrc_Sdl-_V9Ua6ZVc6IbKh5Rm1MpGf10zGFphibOppO26aRtOmubhGzhFnpz7l_3C7q_kT-e5G91xJXf</recordid><startdate>20150123</startdate><enddate>20150123</enddate><creator>Kong, X D</creator><creator>Liu, N</creator><creator>Shi, H R</creator><creator>Dong, J M</creator><creator>Zhao, Z H</creator><creator>Liu, J</creator><creator>Li-Ling, J</creator><creator>Yang, Y X</creator><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>7TM</scope><scope>8FD</scope><scope>FR3</scope><scope>P64</scope><scope>RC3</scope></search><sort><creationdate>20150123</creationdate><title>A novel 3-base pair deletion of the CRYAA gene identified in a large Chinese pedigree featuring autosomal dominant congenital perinuclear cataract</title><author>Kong, X D ; Liu, N ; Shi, H R ; Dong, J M ; Zhao, Z H ; Liu, J ; Li-Ling, J ; Yang, Y X</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c380t-7369b6911f15da7f4e23e436d17e7379ca5c560e95787fd2f28346db58a090e33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Adult</topic><topic>Asian Continental Ancestry Group - genetics</topic><topic>Base Pairing - genetics</topic><topic>Base Sequence</topic><topic>Cataract - congenital</topic><topic>Cataract - genetics</topic><topic>China</topic><topic>Computational Biology</topic><topic>Crystallins - genetics</topic><topic>Female</topic><topic>Follow-Up Studies</topic><topic>Genes, Dominant</topic><topic>Heterozygote</topic><topic>Humans</topic><topic>Infant, Newborn</topic><topic>Male</topic><topic>Molecular Sequence Data</topic><topic>Pedigree</topic><topic>Sequence Deletion - genetics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kong, X D</creatorcontrib><creatorcontrib>Liu, N</creatorcontrib><creatorcontrib>Shi, H R</creatorcontrib><creatorcontrib>Dong, J M</creatorcontrib><creatorcontrib>Zhao, Z H</creatorcontrib><creatorcontrib>Liu, J</creatorcontrib><creatorcontrib>Li-Ling, J</creatorcontrib><creatorcontrib>Yang, Y X</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>Nucleic Acids Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><jtitle>Genetics and molecular research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kong, X D</au><au>Liu, N</au><au>Shi, H R</au><au>Dong, J M</au><au>Zhao, Z H</au><au>Liu, J</au><au>Li-Ling, J</au><au>Yang, Y X</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A novel 3-base pair deletion of the CRYAA gene identified in a large Chinese pedigree featuring autosomal dominant congenital perinuclear cataract</atitle><jtitle>Genetics and molecular research</jtitle><addtitle>Genet Mol Res</addtitle><date>2015-01-23</date><risdate>2015</risdate><volume>14</volume><issue>1</issue><spage>426</spage><epage>432</epage><pages>426-432</pages><issn>1676-5680</issn><eissn>1676-5680</eissn><abstract>Congenital cataract is caused by reduced transparency of the lens resulting from metabolic disorders during the fetal period. The disease shows great heterogeneity both clinically and genetically. We identified a 4-generation ethnic Han Chinese family affected by autosomal dominant congenital perinuclear cataract. The patients underwent full clinical and ophthalmologic examinations to rule out any concomitant disorders. Blood samples were collected and genomic DNA was extracted. Potential mutations in the candidate gene alpha A crystallin (CRYAA) were screened. Prenatal diagnosis was then provided for a fetus of the affected proband by chorionic villus sampling. In all patients, DNA sequencing of the CRYAA gene revealed a novel 3-bp deletion mutation in exon 3 (c.246_248delCGC), which led to deletion of codon 117 encoding arginine (p.117delR) in the peptide chain. The same mutation was not found among unaffected and healthy individuals. Bioinformatic analysis revealed that although the c.246_248delCGC is an 'in-frame' mutation, removal of arginine resulted in a significant change in the protein structure. The fetus did not possess this mutation and was confirmed to be healthy at 1-year follow-up. A novel disease-causing mutation, c.246_248delCGC (p.117delR), of the CRYAA gene has been identified in a Chinese family with autosomal-type perinuclear congenital cataracts. This is also the first report of prenatal diagnosis of this type of congenital cataract.</abstract><cop>Brazil</cop><pmid>25729975</pmid><doi>10.4238/2015.January.23.16</doi><tpages>7</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1676-5680 |
ispartof | Genetics and molecular research, 2015-01, Vol.14 (1), p.426-432 |
issn | 1676-5680 1676-5680 |
language | eng |
recordid | cdi_proquest_miscellaneous_1712573342 |
source | MEDLINE; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals |
subjects | Adult Asian Continental Ancestry Group - genetics Base Pairing - genetics Base Sequence Cataract - congenital Cataract - genetics China Computational Biology Crystallins - genetics Female Follow-Up Studies Genes, Dominant Heterozygote Humans Infant, Newborn Male Molecular Sequence Data Pedigree Sequence Deletion - genetics |
title | A novel 3-base pair deletion of the CRYAA gene identified in a large Chinese pedigree featuring autosomal dominant congenital perinuclear cataract |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-21T22%3A02%3A21IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20novel%203-base%20pair%20deletion%20of%20the%20CRYAA%20gene%20identified%20in%20a%20large%20Chinese%20pedigree%20featuring%20autosomal%20dominant%20congenital%20perinuclear%20cataract&rft.jtitle=Genetics%20and%20molecular%20research&rft.au=Kong,%20X%20D&rft.date=2015-01-23&rft.volume=14&rft.issue=1&rft.spage=426&rft.epage=432&rft.pages=426-432&rft.issn=1676-5680&rft.eissn=1676-5680&rft_id=info:doi/10.4238/2015.January.23.16&rft_dat=%3Cproquest_cross%3E1660652386%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1660652386&rft_id=info:pmid/25729975&rfr_iscdi=true |