Observation of correlated spin–orbit order in a strongly anisotropic quantum wire system
Quantum wires with spin–orbit coupling provide a unique opportunity to simultaneously control the coupling strength and the screened Coulomb interactions where new exotic phases of matter can be explored. Here we report on the observation of an exotic spin–orbit density wave in Pb-atomic wires on Si...
Gespeichert in:
Veröffentlicht in: | Nature communications 2015-09, Vol.6 (1), p.8118-8118, Article 8118 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 8118 |
---|---|
container_issue | 1 |
container_start_page | 8118 |
container_title | Nature communications |
container_volume | 6 |
creator | Brand, C. Pfnür, H. Landolt, G. Muff, S. Dil, J. H. Das, Tanmoy Tegenkamp, Christoph |
description | Quantum wires with spin–orbit coupling provide a unique opportunity to simultaneously control the coupling strength and the screened Coulomb interactions where new exotic phases of matter can be explored. Here we report on the observation of an exotic spin–orbit density wave in Pb-atomic wires on Si(557) surfaces by mapping out the evolution of the modulated spin-texture at various conditions with spin- and angle-resolved photoelectron spectroscopy. The results are independently quantified by surface transport measurements. The spin polarization, coherence length, spin dephasing rate and the associated quasiparticle gap decrease simultaneously as the screened Coulomb interaction decreases with increasing excess coverage, providing a new mechanism for generating and manipulating a spin–orbit entanglement effect via electronic interaction. Despite clear evidence of spontaneous spin-rotation symmetry breaking and modulation of spin-momentum structure as a function of excess coverage, the average spin polarization over the Brillouin zone vanishes, indicating that time-reversal symmetry is intact as theoretically predicted.
Quantum wires offer a platform for controlling spin–orbit coupling and therefore creating exotic phases of matter. Here, the authors use high-resolution spin- and angle-resolved photoemission measurements to identify an interaction-induced spin- and orbital-entangled state in atomic lead wires. |
doi_str_mv | 10.1038/ncomms9118 |
format | Article |
fullrecord | <record><control><sourceid>proquest_C6C</sourceid><recordid>TN_cdi_proquest_miscellaneous_1711537772</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1711537772</sourcerecordid><originalsourceid>FETCH-LOGICAL-c387t-ebab2ed6215e8a0e549ea9afdfbb758dea857152b89b6c217936fb0ca9e876023</originalsourceid><addsrcrecordid>eNpl0E9LwzAYBvAgihtzFz-ABLyIUk2atkmOMvwHAy968VKS9u3IaJMtaZXd_A5-Qz-JHZs6NJck5MfzhgehY0ouKWHiyhauaYKkVOyhYUwSGlEes_2d8wCNQ5iTfjFJRZIcokGcsTSjgg_Ry6MO4F9Va5zFrsKF8x5q1UKJw8LYz_cP57VpsfMleGwsVji03tlZvcLKmuD6y8IUeNkp23YNfjMecFiFFpojdFCpOsB4u4_Q8-3N0-Q-mj7ePUyup1HBBG8j0ErHUGYxTUEoAmkiQUlVlZXWPBUlKJFymsZaSJ0VMeWSZZUmhZIgeEZiNkJnm9yFd8sOQps3JhRQ18qC60JOOaUp45yv6ekfOnedt_3v1opkmaRS9up8owrvQvBQ5QtvGuVXOSX5uvT8t_Qen2wjO91A-UO_K-7BxQaE_snOwO_M_B_3Bf73js8</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1710669199</pqid></control><display><type>article</type><title>Observation of correlated spin–orbit order in a strongly anisotropic quantum wire system</title><source>Springer Nature OA Free Journals</source><creator>Brand, C. ; Pfnür, H. ; Landolt, G. ; Muff, S. ; Dil, J. H. ; Das, Tanmoy ; Tegenkamp, Christoph</creator><creatorcontrib>Brand, C. ; Pfnür, H. ; Landolt, G. ; Muff, S. ; Dil, J. H. ; Das, Tanmoy ; Tegenkamp, Christoph</creatorcontrib><description>Quantum wires with spin–orbit coupling provide a unique opportunity to simultaneously control the coupling strength and the screened Coulomb interactions where new exotic phases of matter can be explored. Here we report on the observation of an exotic spin–orbit density wave in Pb-atomic wires on Si(557) surfaces by mapping out the evolution of the modulated spin-texture at various conditions with spin- and angle-resolved photoelectron spectroscopy. The results are independently quantified by surface transport measurements. The spin polarization, coherence length, spin dephasing rate and the associated quasiparticle gap decrease simultaneously as the screened Coulomb interaction decreases with increasing excess coverage, providing a new mechanism for generating and manipulating a spin–orbit entanglement effect via electronic interaction. Despite clear evidence of spontaneous spin-rotation symmetry breaking and modulation of spin-momentum structure as a function of excess coverage, the average spin polarization over the Brillouin zone vanishes, indicating that time-reversal symmetry is intact as theoretically predicted.
Quantum wires offer a platform for controlling spin–orbit coupling and therefore creating exotic phases of matter. Here, the authors use high-resolution spin- and angle-resolved photoemission measurements to identify an interaction-induced spin- and orbital-entangled state in atomic lead wires.</description><identifier>ISSN: 2041-1723</identifier><identifier>EISSN: 2041-1723</identifier><identifier>DOI: 10.1038/ncomms9118</identifier><identifier>PMID: 26356187</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>140/146 ; 639/766/119/1001 ; 639/925/357 ; Humanities and Social Sciences ; multidisciplinary ; Science ; Science (multidisciplinary)</subject><ispartof>Nature communications, 2015-09, Vol.6 (1), p.8118-8118, Article 8118</ispartof><rights>Springer Nature Limited 2015</rights><rights>Copyright Nature Publishing Group Sep 2015</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c387t-ebab2ed6215e8a0e549ea9afdfbb758dea857152b89b6c217936fb0ca9e876023</citedby><cites>FETCH-LOGICAL-c387t-ebab2ed6215e8a0e549ea9afdfbb758dea857152b89b6c217936fb0ca9e876023</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1038/ncomms9118$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://doi.org/10.1038/ncomms9118$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,860,27903,27904,41099,42168,51554</link.rule.ids><linktorsrc>$$Uhttps://doi.org/10.1038/ncomms9118$$EView_record_in_Springer_Nature$$FView_record_in_$$GSpringer_Nature</linktorsrc><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/26356187$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Brand, C.</creatorcontrib><creatorcontrib>Pfnür, H.</creatorcontrib><creatorcontrib>Landolt, G.</creatorcontrib><creatorcontrib>Muff, S.</creatorcontrib><creatorcontrib>Dil, J. H.</creatorcontrib><creatorcontrib>Das, Tanmoy</creatorcontrib><creatorcontrib>Tegenkamp, Christoph</creatorcontrib><title>Observation of correlated spin–orbit order in a strongly anisotropic quantum wire system</title><title>Nature communications</title><addtitle>Nat Commun</addtitle><addtitle>Nat Commun</addtitle><description>Quantum wires with spin–orbit coupling provide a unique opportunity to simultaneously control the coupling strength and the screened Coulomb interactions where new exotic phases of matter can be explored. Here we report on the observation of an exotic spin–orbit density wave in Pb-atomic wires on Si(557) surfaces by mapping out the evolution of the modulated spin-texture at various conditions with spin- and angle-resolved photoelectron spectroscopy. The results are independently quantified by surface transport measurements. The spin polarization, coherence length, spin dephasing rate and the associated quasiparticle gap decrease simultaneously as the screened Coulomb interaction decreases with increasing excess coverage, providing a new mechanism for generating and manipulating a spin–orbit entanglement effect via electronic interaction. Despite clear evidence of spontaneous spin-rotation symmetry breaking and modulation of spin-momentum structure as a function of excess coverage, the average spin polarization over the Brillouin zone vanishes, indicating that time-reversal symmetry is intact as theoretically predicted.
Quantum wires offer a platform for controlling spin–orbit coupling and therefore creating exotic phases of matter. Here, the authors use high-resolution spin- and angle-resolved photoemission measurements to identify an interaction-induced spin- and orbital-entangled state in atomic lead wires.</description><subject>140/146</subject><subject>639/766/119/1001</subject><subject>639/925/357</subject><subject>Humanities and Social Sciences</subject><subject>multidisciplinary</subject><subject>Science</subject><subject>Science (multidisciplinary)</subject><issn>2041-1723</issn><issn>2041-1723</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNpl0E9LwzAYBvAgihtzFz-ABLyIUk2atkmOMvwHAy968VKS9u3IaJMtaZXd_A5-Qz-JHZs6NJck5MfzhgehY0ouKWHiyhauaYKkVOyhYUwSGlEes_2d8wCNQ5iTfjFJRZIcokGcsTSjgg_Ry6MO4F9Va5zFrsKF8x5q1UKJw8LYz_cP57VpsfMleGwsVji03tlZvcLKmuD6y8IUeNkp23YNfjMecFiFFpojdFCpOsB4u4_Q8-3N0-Q-mj7ePUyup1HBBG8j0ErHUGYxTUEoAmkiQUlVlZXWPBUlKJFymsZaSJ0VMeWSZZUmhZIgeEZiNkJnm9yFd8sOQps3JhRQ18qC60JOOaUp45yv6ekfOnedt_3v1opkmaRS9up8owrvQvBQ5QtvGuVXOSX5uvT8t_Qen2wjO91A-UO_K-7BxQaE_snOwO_M_B_3Bf73js8</recordid><startdate>20150910</startdate><enddate>20150910</enddate><creator>Brand, C.</creator><creator>Pfnür, H.</creator><creator>Landolt, G.</creator><creator>Muff, S.</creator><creator>Dil, J. H.</creator><creator>Das, Tanmoy</creator><creator>Tegenkamp, Christoph</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7ST</scope><scope>7T5</scope><scope>7T7</scope><scope>7TM</scope><scope>7TO</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>RC3</scope><scope>SOI</scope><scope>7X8</scope></search><sort><creationdate>20150910</creationdate><title>Observation of correlated spin–orbit order in a strongly anisotropic quantum wire system</title><author>Brand, C. ; Pfnür, H. ; Landolt, G. ; Muff, S. ; Dil, J. H. ; Das, Tanmoy ; Tegenkamp, Christoph</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c387t-ebab2ed6215e8a0e549ea9afdfbb758dea857152b89b6c217936fb0ca9e876023</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>140/146</topic><topic>639/766/119/1001</topic><topic>639/925/357</topic><topic>Humanities and Social Sciences</topic><topic>multidisciplinary</topic><topic>Science</topic><topic>Science (multidisciplinary)</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Brand, C.</creatorcontrib><creatorcontrib>Pfnür, H.</creatorcontrib><creatorcontrib>Landolt, G.</creatorcontrib><creatorcontrib>Muff, S.</creatorcontrib><creatorcontrib>Dil, J. H.</creatorcontrib><creatorcontrib>Das, Tanmoy</creatorcontrib><creatorcontrib>Tegenkamp, Christoph</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Environment Abstracts</collection><collection>Immunology Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Biological Science Database</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Genetics Abstracts</collection><collection>Environment Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Nature communications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Brand, C.</au><au>Pfnür, H.</au><au>Landolt, G.</au><au>Muff, S.</au><au>Dil, J. H.</au><au>Das, Tanmoy</au><au>Tegenkamp, Christoph</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Observation of correlated spin–orbit order in a strongly anisotropic quantum wire system</atitle><jtitle>Nature communications</jtitle><stitle>Nat Commun</stitle><addtitle>Nat Commun</addtitle><date>2015-09-10</date><risdate>2015</risdate><volume>6</volume><issue>1</issue><spage>8118</spage><epage>8118</epage><pages>8118-8118</pages><artnum>8118</artnum><issn>2041-1723</issn><eissn>2041-1723</eissn><abstract>Quantum wires with spin–orbit coupling provide a unique opportunity to simultaneously control the coupling strength and the screened Coulomb interactions where new exotic phases of matter can be explored. Here we report on the observation of an exotic spin–orbit density wave in Pb-atomic wires on Si(557) surfaces by mapping out the evolution of the modulated spin-texture at various conditions with spin- and angle-resolved photoelectron spectroscopy. The results are independently quantified by surface transport measurements. The spin polarization, coherence length, spin dephasing rate and the associated quasiparticle gap decrease simultaneously as the screened Coulomb interaction decreases with increasing excess coverage, providing a new mechanism for generating and manipulating a spin–orbit entanglement effect via electronic interaction. Despite clear evidence of spontaneous spin-rotation symmetry breaking and modulation of spin-momentum structure as a function of excess coverage, the average spin polarization over the Brillouin zone vanishes, indicating that time-reversal symmetry is intact as theoretically predicted.
Quantum wires offer a platform for controlling spin–orbit coupling and therefore creating exotic phases of matter. Here, the authors use high-resolution spin- and angle-resolved photoemission measurements to identify an interaction-induced spin- and orbital-entangled state in atomic lead wires.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>26356187</pmid><doi>10.1038/ncomms9118</doi><tpages>1</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 2041-1723 |
ispartof | Nature communications, 2015-09, Vol.6 (1), p.8118-8118, Article 8118 |
issn | 2041-1723 2041-1723 |
language | eng |
recordid | cdi_proquest_miscellaneous_1711537772 |
source | Springer Nature OA Free Journals |
subjects | 140/146 639/766/119/1001 639/925/357 Humanities and Social Sciences multidisciplinary Science Science (multidisciplinary) |
title | Observation of correlated spin–orbit order in a strongly anisotropic quantum wire system |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T23%3A06%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_C6C&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Observation%20of%20correlated%20spin%E2%80%93orbit%20order%20in%20a%20strongly%20anisotropic%20quantum%20wire%20system&rft.jtitle=Nature%20communications&rft.au=Brand,%20C.&rft.date=2015-09-10&rft.volume=6&rft.issue=1&rft.spage=8118&rft.epage=8118&rft.pages=8118-8118&rft.artnum=8118&rft.issn=2041-1723&rft.eissn=2041-1723&rft_id=info:doi/10.1038/ncomms9118&rft_dat=%3Cproquest_C6C%3E1711537772%3C/proquest_C6C%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1710669199&rft_id=info:pmid/26356187&rfr_iscdi=true |