Discriminatively Trained And-Or Graph Models for Object Shape Detection

In this paper, we investigate a novel reconfigurable part-based model, namely And-Or graph model, to recognize object shapes in images. Our proposed model consists of four layers: leaf-nodes at the bottom are local classifiers for detecting contour fragments; or-nodes above the leaf-nodes function a...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on pattern analysis and machine intelligence 2015-05, Vol.37 (5), p.959-972
Hauptverfasser: Lin, Liang, Wang, Xiaolong, Yang, Wei, Lai, Jian-Huang
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 972
container_issue 5
container_start_page 959
container_title IEEE transactions on pattern analysis and machine intelligence
container_volume 37
creator Lin, Liang
Wang, Xiaolong
Yang, Wei
Lai, Jian-Huang
description In this paper, we investigate a novel reconfigurable part-based model, namely And-Or graph model, to recognize object shapes in images. Our proposed model consists of four layers: leaf-nodes at the bottom are local classifiers for detecting contour fragments; or-nodes above the leaf-nodes function as the switches to activate their child leaf-nodes, making the model reconfigurable during inference; and-nodes in a higher layer capture holistic shape deformations; one root-node on the top, which is also an or-node, activates one of its child and-nodes to deal with large global variations (e.g. different poses and views). We propose a novel structural optimization algorithm to discriminatively train the And-Or model from weakly annotated data. This algorithm iteratively determines the model structures (e.g. the nodes and their layouts) along with the parameter learning. On several challenging datasets, our model demonstrates the effectiveness to perform robust shape-based object detection against background clutter and outperforms the other state-of-the-art approaches. We also release a new shape database with annotations, which includes more than 1500 challenging shape instances, for recognition and detection.
doi_str_mv 10.1109/TPAMI.2014.2359888
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_miscellaneous_1711536951</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6908013</ieee_id><sourcerecordid>1711536951</sourcerecordid><originalsourceid>FETCH-LOGICAL-c395t-684869ace723eff2f645b295c5583d0fffd967d2c950b1213bd3894e0d65cbc83</originalsourceid><addsrcrecordid>eNpdkEtPAjEQgBujEUT_gCZmEy9eFvugpT0SUCSBYCKem912GpYsu9jumvDvLYIePE0m883rQ-iW4D4hWD2t3kaLWZ9iMuhTxpWU8gx1iWIqZZypc9TFRNBUSio76CqEDY4kx-wSdaiIBKOki6aTIhhfbIsqa4ovKPfJymdFBTYZVTZd-mTqs906WdQWypC42ifLfAOmSd7X2Q6SCTQxKerqGl24rAxwc4o99PHyvBq_pvPldDYezVPDFG9SIQdSqMzAkDJwjjox4DlV3HAumcXOOavE0FKjOM4JJSy3TKoBYCu4yY1kPfR4nLvz9WcLodHb-ACUZVZB3QZNhoRwJhQnEX34h27q1lfxOk2EUlgoHD30ED1SxtcheHB6F3Vkfq8J1gfN-kezPmjWJ82x6f40us23YP9afr1G4O4IFADwV44bJSaMfQOZdX92</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1699069026</pqid></control><display><type>article</type><title>Discriminatively Trained And-Or Graph Models for Object Shape Detection</title><source>IEEE Electronic Library (IEL)</source><creator>Lin, Liang ; Wang, Xiaolong ; Yang, Wei ; Lai, Jian-Huang</creator><creatorcontrib>Lin, Liang ; Wang, Xiaolong ; Yang, Wei ; Lai, Jian-Huang</creatorcontrib><description>In this paper, we investigate a novel reconfigurable part-based model, namely And-Or graph model, to recognize object shapes in images. Our proposed model consists of four layers: leaf-nodes at the bottom are local classifiers for detecting contour fragments; or-nodes above the leaf-nodes function as the switches to activate their child leaf-nodes, making the model reconfigurable during inference; and-nodes in a higher layer capture holistic shape deformations; one root-node on the top, which is also an or-node, activates one of its child and-nodes to deal with large global variations (e.g. different poses and views). We propose a novel structural optimization algorithm to discriminatively train the And-Or model from weakly annotated data. This algorithm iteratively determines the model structures (e.g. the nodes and their layouts) along with the parameter learning. On several challenging datasets, our model demonstrates the effectiveness to perform robust shape-based object detection against background clutter and outperforms the other state-of-the-art approaches. We also release a new shape database with annotations, which includes more than 1500 challenging shape instances, for recognition and detection.</description><identifier>ISSN: 0162-8828</identifier><identifier>EISSN: 1939-3539</identifier><identifier>EISSN: 2160-9292</identifier><identifier>DOI: 10.1109/TPAMI.2014.2359888</identifier><identifier>PMID: 26353321</identifier><identifier>CODEN: ITPIDJ</identifier><language>eng</language><publisher>United States: IEEE</publisher><subject>Collaboration ; Context ; Image edge detection ; Layout ; Optimization ; Shape ; Vectors</subject><ispartof>IEEE transactions on pattern analysis and machine intelligence, 2015-05, Vol.37 (5), p.959-972</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) May 2015</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c395t-684869ace723eff2f645b295c5583d0fffd967d2c950b1213bd3894e0d65cbc83</citedby><cites>FETCH-LOGICAL-c395t-684869ace723eff2f645b295c5583d0fffd967d2c950b1213bd3894e0d65cbc83</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6908013$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27903,27904,54736</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/6908013$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/26353321$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Lin, Liang</creatorcontrib><creatorcontrib>Wang, Xiaolong</creatorcontrib><creatorcontrib>Yang, Wei</creatorcontrib><creatorcontrib>Lai, Jian-Huang</creatorcontrib><title>Discriminatively Trained And-Or Graph Models for Object Shape Detection</title><title>IEEE transactions on pattern analysis and machine intelligence</title><addtitle>TPAMI</addtitle><addtitle>IEEE Trans Pattern Anal Mach Intell</addtitle><description>In this paper, we investigate a novel reconfigurable part-based model, namely And-Or graph model, to recognize object shapes in images. Our proposed model consists of four layers: leaf-nodes at the bottom are local classifiers for detecting contour fragments; or-nodes above the leaf-nodes function as the switches to activate their child leaf-nodes, making the model reconfigurable during inference; and-nodes in a higher layer capture holistic shape deformations; one root-node on the top, which is also an or-node, activates one of its child and-nodes to deal with large global variations (e.g. different poses and views). We propose a novel structural optimization algorithm to discriminatively train the And-Or model from weakly annotated data. This algorithm iteratively determines the model structures (e.g. the nodes and their layouts) along with the parameter learning. On several challenging datasets, our model demonstrates the effectiveness to perform robust shape-based object detection against background clutter and outperforms the other state-of-the-art approaches. We also release a new shape database with annotations, which includes more than 1500 challenging shape instances, for recognition and detection.</description><subject>Collaboration</subject><subject>Context</subject><subject>Image edge detection</subject><subject>Layout</subject><subject>Optimization</subject><subject>Shape</subject><subject>Vectors</subject><issn>0162-8828</issn><issn>1939-3539</issn><issn>2160-9292</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpdkEtPAjEQgBujEUT_gCZmEy9eFvugpT0SUCSBYCKem912GpYsu9jumvDvLYIePE0m883rQ-iW4D4hWD2t3kaLWZ9iMuhTxpWU8gx1iWIqZZypc9TFRNBUSio76CqEDY4kx-wSdaiIBKOki6aTIhhfbIsqa4ovKPfJymdFBTYZVTZd-mTqs906WdQWypC42ifLfAOmSd7X2Q6SCTQxKerqGl24rAxwc4o99PHyvBq_pvPldDYezVPDFG9SIQdSqMzAkDJwjjox4DlV3HAumcXOOavE0FKjOM4JJSy3TKoBYCu4yY1kPfR4nLvz9WcLodHb-ACUZVZB3QZNhoRwJhQnEX34h27q1lfxOk2EUlgoHD30ED1SxtcheHB6F3Vkfq8J1gfN-kezPmjWJ82x6f40us23YP9afr1G4O4IFADwV44bJSaMfQOZdX92</recordid><startdate>20150501</startdate><enddate>20150501</enddate><creator>Lin, Liang</creator><creator>Wang, Xiaolong</creator><creator>Yang, Wei</creator><creator>Lai, Jian-Huang</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>7X8</scope></search><sort><creationdate>20150501</creationdate><title>Discriminatively Trained And-Or Graph Models for Object Shape Detection</title><author>Lin, Liang ; Wang, Xiaolong ; Yang, Wei ; Lai, Jian-Huang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c395t-684869ace723eff2f645b295c5583d0fffd967d2c950b1213bd3894e0d65cbc83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Collaboration</topic><topic>Context</topic><topic>Image edge detection</topic><topic>Layout</topic><topic>Optimization</topic><topic>Shape</topic><topic>Vectors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lin, Liang</creatorcontrib><creatorcontrib>Wang, Xiaolong</creatorcontrib><creatorcontrib>Yang, Wei</creatorcontrib><creatorcontrib>Lai, Jian-Huang</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>MEDLINE - Academic</collection><jtitle>IEEE transactions on pattern analysis and machine intelligence</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Lin, Liang</au><au>Wang, Xiaolong</au><au>Yang, Wei</au><au>Lai, Jian-Huang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Discriminatively Trained And-Or Graph Models for Object Shape Detection</atitle><jtitle>IEEE transactions on pattern analysis and machine intelligence</jtitle><stitle>TPAMI</stitle><addtitle>IEEE Trans Pattern Anal Mach Intell</addtitle><date>2015-05-01</date><risdate>2015</risdate><volume>37</volume><issue>5</issue><spage>959</spage><epage>972</epage><pages>959-972</pages><issn>0162-8828</issn><eissn>1939-3539</eissn><eissn>2160-9292</eissn><coden>ITPIDJ</coden><abstract>In this paper, we investigate a novel reconfigurable part-based model, namely And-Or graph model, to recognize object shapes in images. Our proposed model consists of four layers: leaf-nodes at the bottom are local classifiers for detecting contour fragments; or-nodes above the leaf-nodes function as the switches to activate their child leaf-nodes, making the model reconfigurable during inference; and-nodes in a higher layer capture holistic shape deformations; one root-node on the top, which is also an or-node, activates one of its child and-nodes to deal with large global variations (e.g. different poses and views). We propose a novel structural optimization algorithm to discriminatively train the And-Or model from weakly annotated data. This algorithm iteratively determines the model structures (e.g. the nodes and their layouts) along with the parameter learning. On several challenging datasets, our model demonstrates the effectiveness to perform robust shape-based object detection against background clutter and outperforms the other state-of-the-art approaches. We also release a new shape database with annotations, which includes more than 1500 challenging shape instances, for recognition and detection.</abstract><cop>United States</cop><pub>IEEE</pub><pmid>26353321</pmid><doi>10.1109/TPAMI.2014.2359888</doi><tpages>14</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0162-8828
ispartof IEEE transactions on pattern analysis and machine intelligence, 2015-05, Vol.37 (5), p.959-972
issn 0162-8828
1939-3539
2160-9292
language eng
recordid cdi_proquest_miscellaneous_1711536951
source IEEE Electronic Library (IEL)
subjects Collaboration
Context
Image edge detection
Layout
Optimization
Shape
Vectors
title Discriminatively Trained And-Or Graph Models for Object Shape Detection
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T17%3A00%3A36IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Discriminatively%20Trained%20And-Or%20Graph%20Models%20for%20Object%20Shape%20Detection&rft.jtitle=IEEE%20transactions%20on%20pattern%20analysis%20and%20machine%20intelligence&rft.au=Lin,%20Liang&rft.date=2015-05-01&rft.volume=37&rft.issue=5&rft.spage=959&rft.epage=972&rft.pages=959-972&rft.issn=0162-8828&rft.eissn=1939-3539&rft.coden=ITPIDJ&rft_id=info:doi/10.1109/TPAMI.2014.2359888&rft_dat=%3Cproquest_RIE%3E1711536951%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1699069026&rft_id=info:pmid/26353321&rft_ieee_id=6908013&rfr_iscdi=true