CPMC: Automatic Object Segmentation Using Constrained Parametric Min-Cuts
We present a novel framework to generate and rank plausible hypotheses for the spatial extent of objects in images using bottom-up computational processes and mid-level selection cues. The object hypotheses are represented as figure-ground segmentations, and are extracted automatically, without prio...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on pattern analysis and machine intelligence 2012-07, Vol.34 (7), p.1312-1328 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1328 |
---|---|
container_issue | 7 |
container_start_page | 1312 |
container_title | IEEE transactions on pattern analysis and machine intelligence |
container_volume | 34 |
creator | Carreira, J. Sminchisescu, C. |
description | We present a novel framework to generate and rank plausible hypotheses for the spatial extent of objects in images using bottom-up computational processes and mid-level selection cues. The object hypotheses are represented as figure-ground segmentations, and are extracted automatically, without prior knowledge of the properties of individual object classes, by solving a sequence of Constrained Parametric Min-Cut problems (CPMC) on a regular image grid. In a subsequent step, we learn to rank the corresponding segments by training a continuous model to predict how likely they are to exhibit real-world regularities (expressed as putative overlap with ground truth) based on their mid-level region properties, then diversify the estimated overlap score using maximum marginal relevance measures. We show that this algorithm significantly outperforms the state of the art for low-level segmentation in the VOC 2009 and 2010 data sets. In our companion papers [1], [2], we show that the algorithm can be used, successfully, in a segmentation-based visual object category recognition pipeline. This architecture ranked first in the VOC2009 and VOC2010 image segmentation and labeling challenges. |
doi_str_mv | 10.1109/TPAMI.2011.231 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_miscellaneous_1711536157</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6095566</ieee_id><sourcerecordid>2712172971</sourcerecordid><originalsourceid>FETCH-LOGICAL-c472t-646dcbd66ab93fc7b5422f646bc0b9177053747111d8d6469d5f3c35902300a23</originalsourceid><addsrcrecordid>eNqF0U1r3DAQBmBRWprNxzWXQjGUQC7eajSWZPW2mHwsZMlCkrORZTl4WcupJB_676vtbhLIpSfB6JlhhpeQc6BzAKp-Pq4Xq-WcUYA5Q_hEZqBQ5chRfSYzCoLlZcnKI3IcwoZSKDjFr-SIMSgKznBGltV6Vf3KFlMcBx17k903G2ti9mCfB-tiKo0uewq9e86q0YXode9sm62114ONPjWsepdXUwyn5Eunt8GeHd4T8nR99Vjd5nf3N8tqcZebQrKYi0K0pmmF0I3CzsiGF4x1qdoY2iiQknKUhQSAtmxTWbW8Q4NcUYaUaoYn5HI_98WPvycbYj30wdjtVjs7TqGG1MtRAJf_pxRLhhywTPTHB7oZJ-_SIUkxLkspqEhqvlfGjyF429Uvvh-0_5NQvcuj_pdHvcujTnmkhu-HsVMz2PaNvwaQwMUB6GD0tvPamT68O1GkHWG337e96621b9-CKs6FwL_ImJen</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1025787606</pqid></control><display><type>article</type><title>CPMC: Automatic Object Segmentation Using Constrained Parametric Min-Cuts</title><source>IEEE Electronic Library (IEL)</source><creator>Carreira, J. ; Sminchisescu, C.</creator><creatorcontrib>Carreira, J. ; Sminchisescu, C.</creatorcontrib><description>We present a novel framework to generate and rank plausible hypotheses for the spatial extent of objects in images using bottom-up computational processes and mid-level selection cues. The object hypotheses are represented as figure-ground segmentations, and are extracted automatically, without prior knowledge of the properties of individual object classes, by solving a sequence of Constrained Parametric Min-Cut problems (CPMC) on a regular image grid. In a subsequent step, we learn to rank the corresponding segments by training a continuous model to predict how likely they are to exhibit real-world regularities (expressed as putative overlap with ground truth) based on their mid-level region properties, then diversify the estimated overlap score using maximum marginal relevance measures. We show that this algorithm significantly outperforms the state of the art for low-level segmentation in the VOC 2009 and 2010 data sets. In our companion papers [1], [2], we show that the algorithm can be used, successfully, in a segmentation-based visual object category recognition pipeline. This architecture ranked first in the VOC2009 and VOC2010 image segmentation and labeling challenges.</description><identifier>ISSN: 0162-8828</identifier><identifier>EISSN: 1939-3539</identifier><identifier>EISSN: 2160-9292</identifier><identifier>DOI: 10.1109/TPAMI.2011.231</identifier><identifier>PMID: 22144523</identifier><identifier>CODEN: ITPIDJ</identifier><language>eng</language><publisher>Los Alamitos, CA: IEEE</publisher><subject>Algorithms ; Applied sciences ; Artificial intelligence ; Categories ; Computer science; control theory; systems ; Constraints ; Detectors ; Exact sciences and technology ; figure-ground segmentation ; Hypotheses ; Image color analysis ; Image edge detection ; Image segmentation ; Information retrieval. Graph ; learning ; Mathematical models ; Object recognition ; Object segmentation ; Pattern recognition. Digital image processing. Computational geometry ; Segmentation ; Shape ; Studies ; Theoretical computing</subject><ispartof>IEEE transactions on pattern analysis and machine intelligence, 2012-07, Vol.34 (7), p.1312-1328</ispartof><rights>2014 INIST-CNRS</rights><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) Jul 2012</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c472t-646dcbd66ab93fc7b5422f646bc0b9177053747111d8d6469d5f3c35902300a23</citedby><cites>FETCH-LOGICAL-c472t-646dcbd66ab93fc7b5422f646bc0b9177053747111d8d6469d5f3c35902300a23</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6095566$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/6095566$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=26403818$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/22144523$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Carreira, J.</creatorcontrib><creatorcontrib>Sminchisescu, C.</creatorcontrib><title>CPMC: Automatic Object Segmentation Using Constrained Parametric Min-Cuts</title><title>IEEE transactions on pattern analysis and machine intelligence</title><addtitle>TPAMI</addtitle><addtitle>IEEE Trans Pattern Anal Mach Intell</addtitle><description>We present a novel framework to generate and rank plausible hypotheses for the spatial extent of objects in images using bottom-up computational processes and mid-level selection cues. The object hypotheses are represented as figure-ground segmentations, and are extracted automatically, without prior knowledge of the properties of individual object classes, by solving a sequence of Constrained Parametric Min-Cut problems (CPMC) on a regular image grid. In a subsequent step, we learn to rank the corresponding segments by training a continuous model to predict how likely they are to exhibit real-world regularities (expressed as putative overlap with ground truth) based on their mid-level region properties, then diversify the estimated overlap score using maximum marginal relevance measures. We show that this algorithm significantly outperforms the state of the art for low-level segmentation in the VOC 2009 and 2010 data sets. In our companion papers [1], [2], we show that the algorithm can be used, successfully, in a segmentation-based visual object category recognition pipeline. This architecture ranked first in the VOC2009 and VOC2010 image segmentation and labeling challenges.</description><subject>Algorithms</subject><subject>Applied sciences</subject><subject>Artificial intelligence</subject><subject>Categories</subject><subject>Computer science; control theory; systems</subject><subject>Constraints</subject><subject>Detectors</subject><subject>Exact sciences and technology</subject><subject>figure-ground segmentation</subject><subject>Hypotheses</subject><subject>Image color analysis</subject><subject>Image edge detection</subject><subject>Image segmentation</subject><subject>Information retrieval. Graph</subject><subject>learning</subject><subject>Mathematical models</subject><subject>Object recognition</subject><subject>Object segmentation</subject><subject>Pattern recognition. Digital image processing. Computational geometry</subject><subject>Segmentation</subject><subject>Shape</subject><subject>Studies</subject><subject>Theoretical computing</subject><issn>0162-8828</issn><issn>1939-3539</issn><issn>2160-9292</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNqF0U1r3DAQBmBRWprNxzWXQjGUQC7eajSWZPW2mHwsZMlCkrORZTl4WcupJB_676vtbhLIpSfB6JlhhpeQc6BzAKp-Pq4Xq-WcUYA5Q_hEZqBQ5chRfSYzCoLlZcnKI3IcwoZSKDjFr-SIMSgKznBGltV6Vf3KFlMcBx17k903G2ti9mCfB-tiKo0uewq9e86q0YXode9sm62114ONPjWsepdXUwyn5Eunt8GeHd4T8nR99Vjd5nf3N8tqcZebQrKYi0K0pmmF0I3CzsiGF4x1qdoY2iiQknKUhQSAtmxTWbW8Q4NcUYaUaoYn5HI_98WPvycbYj30wdjtVjs7TqGG1MtRAJf_pxRLhhywTPTHB7oZJ-_SIUkxLkspqEhqvlfGjyF429Uvvh-0_5NQvcuj_pdHvcujTnmkhu-HsVMz2PaNvwaQwMUB6GD0tvPamT68O1GkHWG337e96621b9-CKs6FwL_ImJen</recordid><startdate>20120701</startdate><enddate>20120701</enddate><creator>Carreira, J.</creator><creator>Sminchisescu, C.</creator><general>IEEE</general><general>IEEE Computer Society</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>IQODW</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>F28</scope><scope>FR3</scope><scope>7X8</scope></search><sort><creationdate>20120701</creationdate><title>CPMC: Automatic Object Segmentation Using Constrained Parametric Min-Cuts</title><author>Carreira, J. ; Sminchisescu, C.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c472t-646dcbd66ab93fc7b5422f646bc0b9177053747111d8d6469d5f3c35902300a23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Algorithms</topic><topic>Applied sciences</topic><topic>Artificial intelligence</topic><topic>Categories</topic><topic>Computer science; control theory; systems</topic><topic>Constraints</topic><topic>Detectors</topic><topic>Exact sciences and technology</topic><topic>figure-ground segmentation</topic><topic>Hypotheses</topic><topic>Image color analysis</topic><topic>Image edge detection</topic><topic>Image segmentation</topic><topic>Information retrieval. Graph</topic><topic>learning</topic><topic>Mathematical models</topic><topic>Object recognition</topic><topic>Object segmentation</topic><topic>Pattern recognition. Digital image processing. Computational geometry</topic><topic>Segmentation</topic><topic>Shape</topic><topic>Studies</topic><topic>Theoretical computing</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Carreira, J.</creatorcontrib><creatorcontrib>Sminchisescu, C.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>Pascal-Francis</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>MEDLINE - Academic</collection><jtitle>IEEE transactions on pattern analysis and machine intelligence</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Carreira, J.</au><au>Sminchisescu, C.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>CPMC: Automatic Object Segmentation Using Constrained Parametric Min-Cuts</atitle><jtitle>IEEE transactions on pattern analysis and machine intelligence</jtitle><stitle>TPAMI</stitle><addtitle>IEEE Trans Pattern Anal Mach Intell</addtitle><date>2012-07-01</date><risdate>2012</risdate><volume>34</volume><issue>7</issue><spage>1312</spage><epage>1328</epage><pages>1312-1328</pages><issn>0162-8828</issn><eissn>1939-3539</eissn><eissn>2160-9292</eissn><coden>ITPIDJ</coden><abstract>We present a novel framework to generate and rank plausible hypotheses for the spatial extent of objects in images using bottom-up computational processes and mid-level selection cues. The object hypotheses are represented as figure-ground segmentations, and are extracted automatically, without prior knowledge of the properties of individual object classes, by solving a sequence of Constrained Parametric Min-Cut problems (CPMC) on a regular image grid. In a subsequent step, we learn to rank the corresponding segments by training a continuous model to predict how likely they are to exhibit real-world regularities (expressed as putative overlap with ground truth) based on their mid-level region properties, then diversify the estimated overlap score using maximum marginal relevance measures. We show that this algorithm significantly outperforms the state of the art for low-level segmentation in the VOC 2009 and 2010 data sets. In our companion papers [1], [2], we show that the algorithm can be used, successfully, in a segmentation-based visual object category recognition pipeline. This architecture ranked first in the VOC2009 and VOC2010 image segmentation and labeling challenges.</abstract><cop>Los Alamitos, CA</cop><pub>IEEE</pub><pmid>22144523</pmid><doi>10.1109/TPAMI.2011.231</doi><tpages>17</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 0162-8828 |
ispartof | IEEE transactions on pattern analysis and machine intelligence, 2012-07, Vol.34 (7), p.1312-1328 |
issn | 0162-8828 1939-3539 2160-9292 |
language | eng |
recordid | cdi_proquest_miscellaneous_1711536157 |
source | IEEE Electronic Library (IEL) |
subjects | Algorithms Applied sciences Artificial intelligence Categories Computer science control theory systems Constraints Detectors Exact sciences and technology figure-ground segmentation Hypotheses Image color analysis Image edge detection Image segmentation Information retrieval. Graph learning Mathematical models Object recognition Object segmentation Pattern recognition. Digital image processing. Computational geometry Segmentation Shape Studies Theoretical computing |
title | CPMC: Automatic Object Segmentation Using Constrained Parametric Min-Cuts |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T12%3A33%3A39IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=CPMC:%20Automatic%20Object%20Segmentation%20Using%20Constrained%20Parametric%20Min-Cuts&rft.jtitle=IEEE%20transactions%20on%20pattern%20analysis%20and%20machine%20intelligence&rft.au=Carreira,%20J.&rft.date=2012-07-01&rft.volume=34&rft.issue=7&rft.spage=1312&rft.epage=1328&rft.pages=1312-1328&rft.issn=0162-8828&rft.eissn=1939-3539&rft.coden=ITPIDJ&rft_id=info:doi/10.1109/TPAMI.2011.231&rft_dat=%3Cproquest_RIE%3E2712172971%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1025787606&rft_id=info:pmid/22144523&rft_ieee_id=6095566&rfr_iscdi=true |