CPMC: Automatic Object Segmentation Using Constrained Parametric Min-Cuts

We present a novel framework to generate and rank plausible hypotheses for the spatial extent of objects in images using bottom-up computational processes and mid-level selection cues. The object hypotheses are represented as figure-ground segmentations, and are extracted automatically, without prio...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on pattern analysis and machine intelligence 2012-07, Vol.34 (7), p.1312-1328
Hauptverfasser: Carreira, J., Sminchisescu, C.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1328
container_issue 7
container_start_page 1312
container_title IEEE transactions on pattern analysis and machine intelligence
container_volume 34
creator Carreira, J.
Sminchisescu, C.
description We present a novel framework to generate and rank plausible hypotheses for the spatial extent of objects in images using bottom-up computational processes and mid-level selection cues. The object hypotheses are represented as figure-ground segmentations, and are extracted automatically, without prior knowledge of the properties of individual object classes, by solving a sequence of Constrained Parametric Min-Cut problems (CPMC) on a regular image grid. In a subsequent step, we learn to rank the corresponding segments by training a continuous model to predict how likely they are to exhibit real-world regularities (expressed as putative overlap with ground truth) based on their mid-level region properties, then diversify the estimated overlap score using maximum marginal relevance measures. We show that this algorithm significantly outperforms the state of the art for low-level segmentation in the VOC 2009 and 2010 data sets. In our companion papers [1], [2], we show that the algorithm can be used, successfully, in a segmentation-based visual object category recognition pipeline. This architecture ranked first in the VOC2009 and VOC2010 image segmentation and labeling challenges.
doi_str_mv 10.1109/TPAMI.2011.231
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_miscellaneous_1711536157</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6095566</ieee_id><sourcerecordid>2712172971</sourcerecordid><originalsourceid>FETCH-LOGICAL-c472t-646dcbd66ab93fc7b5422f646bc0b9177053747111d8d6469d5f3c35902300a23</originalsourceid><addsrcrecordid>eNqF0U1r3DAQBmBRWprNxzWXQjGUQC7eajSWZPW2mHwsZMlCkrORZTl4WcupJB_676vtbhLIpSfB6JlhhpeQc6BzAKp-Pq4Xq-WcUYA5Q_hEZqBQ5chRfSYzCoLlZcnKI3IcwoZSKDjFr-SIMSgKznBGltV6Vf3KFlMcBx17k903G2ti9mCfB-tiKo0uewq9e86q0YXode9sm62114ONPjWsepdXUwyn5Eunt8GeHd4T8nR99Vjd5nf3N8tqcZebQrKYi0K0pmmF0I3CzsiGF4x1qdoY2iiQknKUhQSAtmxTWbW8Q4NcUYaUaoYn5HI_98WPvycbYj30wdjtVjs7TqGG1MtRAJf_pxRLhhywTPTHB7oZJ-_SIUkxLkspqEhqvlfGjyF429Uvvh-0_5NQvcuj_pdHvcujTnmkhu-HsVMz2PaNvwaQwMUB6GD0tvPamT68O1GkHWG337e96621b9-CKs6FwL_ImJen</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1025787606</pqid></control><display><type>article</type><title>CPMC: Automatic Object Segmentation Using Constrained Parametric Min-Cuts</title><source>IEEE Electronic Library (IEL)</source><creator>Carreira, J. ; Sminchisescu, C.</creator><creatorcontrib>Carreira, J. ; Sminchisescu, C.</creatorcontrib><description>We present a novel framework to generate and rank plausible hypotheses for the spatial extent of objects in images using bottom-up computational processes and mid-level selection cues. The object hypotheses are represented as figure-ground segmentations, and are extracted automatically, without prior knowledge of the properties of individual object classes, by solving a sequence of Constrained Parametric Min-Cut problems (CPMC) on a regular image grid. In a subsequent step, we learn to rank the corresponding segments by training a continuous model to predict how likely they are to exhibit real-world regularities (expressed as putative overlap with ground truth) based on their mid-level region properties, then diversify the estimated overlap score using maximum marginal relevance measures. We show that this algorithm significantly outperforms the state of the art for low-level segmentation in the VOC 2009 and 2010 data sets. In our companion papers [1], [2], we show that the algorithm can be used, successfully, in a segmentation-based visual object category recognition pipeline. This architecture ranked first in the VOC2009 and VOC2010 image segmentation and labeling challenges.</description><identifier>ISSN: 0162-8828</identifier><identifier>EISSN: 1939-3539</identifier><identifier>EISSN: 2160-9292</identifier><identifier>DOI: 10.1109/TPAMI.2011.231</identifier><identifier>PMID: 22144523</identifier><identifier>CODEN: ITPIDJ</identifier><language>eng</language><publisher>Los Alamitos, CA: IEEE</publisher><subject>Algorithms ; Applied sciences ; Artificial intelligence ; Categories ; Computer science; control theory; systems ; Constraints ; Detectors ; Exact sciences and technology ; figure-ground segmentation ; Hypotheses ; Image color analysis ; Image edge detection ; Image segmentation ; Information retrieval. Graph ; learning ; Mathematical models ; Object recognition ; Object segmentation ; Pattern recognition. Digital image processing. Computational geometry ; Segmentation ; Shape ; Studies ; Theoretical computing</subject><ispartof>IEEE transactions on pattern analysis and machine intelligence, 2012-07, Vol.34 (7), p.1312-1328</ispartof><rights>2014 INIST-CNRS</rights><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) Jul 2012</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c472t-646dcbd66ab93fc7b5422f646bc0b9177053747111d8d6469d5f3c35902300a23</citedby><cites>FETCH-LOGICAL-c472t-646dcbd66ab93fc7b5422f646bc0b9177053747111d8d6469d5f3c35902300a23</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6095566$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/6095566$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=26403818$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/22144523$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Carreira, J.</creatorcontrib><creatorcontrib>Sminchisescu, C.</creatorcontrib><title>CPMC: Automatic Object Segmentation Using Constrained Parametric Min-Cuts</title><title>IEEE transactions on pattern analysis and machine intelligence</title><addtitle>TPAMI</addtitle><addtitle>IEEE Trans Pattern Anal Mach Intell</addtitle><description>We present a novel framework to generate and rank plausible hypotheses for the spatial extent of objects in images using bottom-up computational processes and mid-level selection cues. The object hypotheses are represented as figure-ground segmentations, and are extracted automatically, without prior knowledge of the properties of individual object classes, by solving a sequence of Constrained Parametric Min-Cut problems (CPMC) on a regular image grid. In a subsequent step, we learn to rank the corresponding segments by training a continuous model to predict how likely they are to exhibit real-world regularities (expressed as putative overlap with ground truth) based on their mid-level region properties, then diversify the estimated overlap score using maximum marginal relevance measures. We show that this algorithm significantly outperforms the state of the art for low-level segmentation in the VOC 2009 and 2010 data sets. In our companion papers [1], [2], we show that the algorithm can be used, successfully, in a segmentation-based visual object category recognition pipeline. This architecture ranked first in the VOC2009 and VOC2010 image segmentation and labeling challenges.</description><subject>Algorithms</subject><subject>Applied sciences</subject><subject>Artificial intelligence</subject><subject>Categories</subject><subject>Computer science; control theory; systems</subject><subject>Constraints</subject><subject>Detectors</subject><subject>Exact sciences and technology</subject><subject>figure-ground segmentation</subject><subject>Hypotheses</subject><subject>Image color analysis</subject><subject>Image edge detection</subject><subject>Image segmentation</subject><subject>Information retrieval. Graph</subject><subject>learning</subject><subject>Mathematical models</subject><subject>Object recognition</subject><subject>Object segmentation</subject><subject>Pattern recognition. Digital image processing. Computational geometry</subject><subject>Segmentation</subject><subject>Shape</subject><subject>Studies</subject><subject>Theoretical computing</subject><issn>0162-8828</issn><issn>1939-3539</issn><issn>2160-9292</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNqF0U1r3DAQBmBRWprNxzWXQjGUQC7eajSWZPW2mHwsZMlCkrORZTl4WcupJB_676vtbhLIpSfB6JlhhpeQc6BzAKp-Pq4Xq-WcUYA5Q_hEZqBQ5chRfSYzCoLlZcnKI3IcwoZSKDjFr-SIMSgKznBGltV6Vf3KFlMcBx17k903G2ti9mCfB-tiKo0uewq9e86q0YXode9sm62114ONPjWsepdXUwyn5Eunt8GeHd4T8nR99Vjd5nf3N8tqcZebQrKYi0K0pmmF0I3CzsiGF4x1qdoY2iiQknKUhQSAtmxTWbW8Q4NcUYaUaoYn5HI_98WPvycbYj30wdjtVjs7TqGG1MtRAJf_pxRLhhywTPTHB7oZJ-_SIUkxLkspqEhqvlfGjyF429Uvvh-0_5NQvcuj_pdHvcujTnmkhu-HsVMz2PaNvwaQwMUB6GD0tvPamT68O1GkHWG337e96621b9-CKs6FwL_ImJen</recordid><startdate>20120701</startdate><enddate>20120701</enddate><creator>Carreira, J.</creator><creator>Sminchisescu, C.</creator><general>IEEE</general><general>IEEE Computer Society</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>IQODW</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>F28</scope><scope>FR3</scope><scope>7X8</scope></search><sort><creationdate>20120701</creationdate><title>CPMC: Automatic Object Segmentation Using Constrained Parametric Min-Cuts</title><author>Carreira, J. ; Sminchisescu, C.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c472t-646dcbd66ab93fc7b5422f646bc0b9177053747111d8d6469d5f3c35902300a23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Algorithms</topic><topic>Applied sciences</topic><topic>Artificial intelligence</topic><topic>Categories</topic><topic>Computer science; control theory; systems</topic><topic>Constraints</topic><topic>Detectors</topic><topic>Exact sciences and technology</topic><topic>figure-ground segmentation</topic><topic>Hypotheses</topic><topic>Image color analysis</topic><topic>Image edge detection</topic><topic>Image segmentation</topic><topic>Information retrieval. Graph</topic><topic>learning</topic><topic>Mathematical models</topic><topic>Object recognition</topic><topic>Object segmentation</topic><topic>Pattern recognition. Digital image processing. Computational geometry</topic><topic>Segmentation</topic><topic>Shape</topic><topic>Studies</topic><topic>Theoretical computing</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Carreira, J.</creatorcontrib><creatorcontrib>Sminchisescu, C.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>Pascal-Francis</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>MEDLINE - Academic</collection><jtitle>IEEE transactions on pattern analysis and machine intelligence</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Carreira, J.</au><au>Sminchisescu, C.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>CPMC: Automatic Object Segmentation Using Constrained Parametric Min-Cuts</atitle><jtitle>IEEE transactions on pattern analysis and machine intelligence</jtitle><stitle>TPAMI</stitle><addtitle>IEEE Trans Pattern Anal Mach Intell</addtitle><date>2012-07-01</date><risdate>2012</risdate><volume>34</volume><issue>7</issue><spage>1312</spage><epage>1328</epage><pages>1312-1328</pages><issn>0162-8828</issn><eissn>1939-3539</eissn><eissn>2160-9292</eissn><coden>ITPIDJ</coden><abstract>We present a novel framework to generate and rank plausible hypotheses for the spatial extent of objects in images using bottom-up computational processes and mid-level selection cues. The object hypotheses are represented as figure-ground segmentations, and are extracted automatically, without prior knowledge of the properties of individual object classes, by solving a sequence of Constrained Parametric Min-Cut problems (CPMC) on a regular image grid. In a subsequent step, we learn to rank the corresponding segments by training a continuous model to predict how likely they are to exhibit real-world regularities (expressed as putative overlap with ground truth) based on their mid-level region properties, then diversify the estimated overlap score using maximum marginal relevance measures. We show that this algorithm significantly outperforms the state of the art for low-level segmentation in the VOC 2009 and 2010 data sets. In our companion papers [1], [2], we show that the algorithm can be used, successfully, in a segmentation-based visual object category recognition pipeline. This architecture ranked first in the VOC2009 and VOC2010 image segmentation and labeling challenges.</abstract><cop>Los Alamitos, CA</cop><pub>IEEE</pub><pmid>22144523</pmid><doi>10.1109/TPAMI.2011.231</doi><tpages>17</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0162-8828
ispartof IEEE transactions on pattern analysis and machine intelligence, 2012-07, Vol.34 (7), p.1312-1328
issn 0162-8828
1939-3539
2160-9292
language eng
recordid cdi_proquest_miscellaneous_1711536157
source IEEE Electronic Library (IEL)
subjects Algorithms
Applied sciences
Artificial intelligence
Categories
Computer science
control theory
systems
Constraints
Detectors
Exact sciences and technology
figure-ground segmentation
Hypotheses
Image color analysis
Image edge detection
Image segmentation
Information retrieval. Graph
learning
Mathematical models
Object recognition
Object segmentation
Pattern recognition. Digital image processing. Computational geometry
Segmentation
Shape
Studies
Theoretical computing
title CPMC: Automatic Object Segmentation Using Constrained Parametric Min-Cuts
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T12%3A33%3A39IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=CPMC:%20Automatic%20Object%20Segmentation%20Using%20Constrained%20Parametric%20Min-Cuts&rft.jtitle=IEEE%20transactions%20on%20pattern%20analysis%20and%20machine%20intelligence&rft.au=Carreira,%20J.&rft.date=2012-07-01&rft.volume=34&rft.issue=7&rft.spage=1312&rft.epage=1328&rft.pages=1312-1328&rft.issn=0162-8828&rft.eissn=1939-3539&rft.coden=ITPIDJ&rft_id=info:doi/10.1109/TPAMI.2011.231&rft_dat=%3Cproquest_RIE%3E2712172971%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1025787606&rft_id=info:pmid/22144523&rft_ieee_id=6095566&rfr_iscdi=true