Markov Network-Based Unified Classifier for Face Recognition
In this paper, we propose a novel unifying framework using a Markov network to learn the relationships among multiple classifiers. In face recognition, we assume that we have several complementary classifiers available, and assign observation nodes to the features of a query image and hidden nodes t...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on image processing 2015-11, Vol.24 (11), p.4263-4275 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 4275 |
---|---|
container_issue | 11 |
container_start_page | 4263 |
container_title | IEEE transactions on image processing |
container_volume | 24 |
creator | Hwang, Wonjun Kim, Junmo |
description | In this paper, we propose a novel unifying framework using a Markov network to learn the relationships among multiple classifiers. In face recognition, we assume that we have several complementary classifiers available, and assign observation nodes to the features of a query image and hidden nodes to those of gallery images. Under the Markov assumption, we connect each hidden node to its corresponding observation node and the hidden nodes of neighboring classifiers. For each observation-hidden node pair, we collect the set of gallery candidates most similar to the observation instance, and capture the relationship between the hidden nodes in terms of a similarity matrix among the retrieved gallery images. Posterior probabilities in the hidden nodes are computed using the belief propagation algorithm, and we use marginal probability as the new similarity value of the classifier. The novelty of our proposed framework lies in the method that considers classifier dependence using the results of each neighboring classifier. We present the extensive evaluation results for two different protocols, known and unknown image variation tests, using four publicly available databases: 1) the Face Recognition Grand Challenge ver. 2.0; 2) XM2VTS; 3) BANCA; and 4) Multi-PIE. The result shows that our framework consistently yields improved recognition rates in various situations. |
doi_str_mv | 10.1109/TIP.2015.2460464 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_miscellaneous_1711535651</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>7165634</ieee_id><sourcerecordid>1711535651</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-31741d8569105f26a55df63abb5bb5ebc4583233f2cb53f7945941a088ed76303</originalsourceid><addsrcrecordid>eNo9kM1LAzEQxYMotlbvgiB79LI1k6_dgBdbrBbqB9KeQ3Y3kbXbTU22iv-9Ka2FgXkwbx4zP4QuAQ8BsLydT9-GBAMfEiYwE-wI9UEySDFm5DhqzLM0AyZ76CyET4yBcRCnqEcEAYkl76O7Z-2X7jt5Md2P88t0pIOpkkVb2zr2caND2EqfWOeTiS5N8m5K99HWXe3ac3RidRPMxb4P0GLyMB8_pbPXx-n4fpaWFGSXUsgYVDkXMh5kidCcV1ZQXRQ8lilKxnNKKLWkLDi1mWQ8PqFxnpsqExTTAbrZ5a69-9qY0KlVHUrTNLo1bhMUZACccsEhWvHOWnoXgjdWrX290v5XAVZbZioyU1tmas8srlzv0zfFylSHhX9I0XC1M9TGmMM4A8EFZfQPHTdt0A</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1711535651</pqid></control><display><type>article</type><title>Markov Network-Based Unified Classifier for Face Recognition</title><source>IEEE Electronic Library (IEL)</source><creator>Hwang, Wonjun ; Kim, Junmo</creator><creatorcontrib>Hwang, Wonjun ; Kim, Junmo</creatorcontrib><description>In this paper, we propose a novel unifying framework using a Markov network to learn the relationships among multiple classifiers. In face recognition, we assume that we have several complementary classifiers available, and assign observation nodes to the features of a query image and hidden nodes to those of gallery images. Under the Markov assumption, we connect each hidden node to its corresponding observation node and the hidden nodes of neighboring classifiers. For each observation-hidden node pair, we collect the set of gallery candidates most similar to the observation instance, and capture the relationship between the hidden nodes in terms of a similarity matrix among the retrieved gallery images. Posterior probabilities in the hidden nodes are computed using the belief propagation algorithm, and we use marginal probability as the new similarity value of the classifier. The novelty of our proposed framework lies in the method that considers classifier dependence using the results of each neighboring classifier. We present the extensive evaluation results for two different protocols, known and unknown image variation tests, using four publicly available databases: 1) the Face Recognition Grand Challenge ver. 2.0; 2) XM2VTS; 3) BANCA; and 4) Multi-PIE. The result shows that our framework consistently yields improved recognition rates in various situations.</description><identifier>ISSN: 1057-7149</identifier><identifier>EISSN: 1941-0042</identifier><identifier>DOI: 10.1109/TIP.2015.2460464</identifier><identifier>PMID: 26219095</identifier><identifier>CODEN: IIPRE4</identifier><language>eng</language><publisher>United States: IEEE</publisher><subject>Algorithms ; Biometric Identification - methods ; Databases, Factual ; Face ; Face - anatomy & histology ; Face recognition ; Feature extraction ; Humans ; Markov Chains ; Markov Network ; Markov random fields ; Multiple Classifiers ; Training</subject><ispartof>IEEE transactions on image processing, 2015-11, Vol.24 (11), p.4263-4275</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c319t-31741d8569105f26a55df63abb5bb5ebc4583233f2cb53f7945941a088ed76303</citedby><cites>FETCH-LOGICAL-c319t-31741d8569105f26a55df63abb5bb5ebc4583233f2cb53f7945941a088ed76303</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/7165634$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,777,781,793,27906,27907,54740</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/7165634$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/26219095$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Hwang, Wonjun</creatorcontrib><creatorcontrib>Kim, Junmo</creatorcontrib><title>Markov Network-Based Unified Classifier for Face Recognition</title><title>IEEE transactions on image processing</title><addtitle>TIP</addtitle><addtitle>IEEE Trans Image Process</addtitle><description>In this paper, we propose a novel unifying framework using a Markov network to learn the relationships among multiple classifiers. In face recognition, we assume that we have several complementary classifiers available, and assign observation nodes to the features of a query image and hidden nodes to those of gallery images. Under the Markov assumption, we connect each hidden node to its corresponding observation node and the hidden nodes of neighboring classifiers. For each observation-hidden node pair, we collect the set of gallery candidates most similar to the observation instance, and capture the relationship between the hidden nodes in terms of a similarity matrix among the retrieved gallery images. Posterior probabilities in the hidden nodes are computed using the belief propagation algorithm, and we use marginal probability as the new similarity value of the classifier. The novelty of our proposed framework lies in the method that considers classifier dependence using the results of each neighboring classifier. We present the extensive evaluation results for two different protocols, known and unknown image variation tests, using four publicly available databases: 1) the Face Recognition Grand Challenge ver. 2.0; 2) XM2VTS; 3) BANCA; and 4) Multi-PIE. The result shows that our framework consistently yields improved recognition rates in various situations.</description><subject>Algorithms</subject><subject>Biometric Identification - methods</subject><subject>Databases, Factual</subject><subject>Face</subject><subject>Face - anatomy & histology</subject><subject>Face recognition</subject><subject>Feature extraction</subject><subject>Humans</subject><subject>Markov Chains</subject><subject>Markov Network</subject><subject>Markov random fields</subject><subject>Multiple Classifiers</subject><subject>Training</subject><issn>1057-7149</issn><issn>1941-0042</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><sourceid>EIF</sourceid><recordid>eNo9kM1LAzEQxYMotlbvgiB79LI1k6_dgBdbrBbqB9KeQ3Y3kbXbTU22iv-9Ka2FgXkwbx4zP4QuAQ8BsLydT9-GBAMfEiYwE-wI9UEySDFm5DhqzLM0AyZ76CyET4yBcRCnqEcEAYkl76O7Z-2X7jt5Md2P88t0pIOpkkVb2zr2caND2EqfWOeTiS5N8m5K99HWXe3ac3RidRPMxb4P0GLyMB8_pbPXx-n4fpaWFGSXUsgYVDkXMh5kidCcV1ZQXRQ8lilKxnNKKLWkLDi1mWQ8PqFxnpsqExTTAbrZ5a69-9qY0KlVHUrTNLo1bhMUZACccsEhWvHOWnoXgjdWrX290v5XAVZbZioyU1tmas8srlzv0zfFylSHhX9I0XC1M9TGmMM4A8EFZfQPHTdt0A</recordid><startdate>201511</startdate><enddate>201511</enddate><creator>Hwang, Wonjun</creator><creator>Kim, Junmo</creator><general>IEEE</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>201511</creationdate><title>Markov Network-Based Unified Classifier for Face Recognition</title><author>Hwang, Wonjun ; Kim, Junmo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-31741d8569105f26a55df63abb5bb5ebc4583233f2cb53f7945941a088ed76303</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Algorithms</topic><topic>Biometric Identification - methods</topic><topic>Databases, Factual</topic><topic>Face</topic><topic>Face - anatomy & histology</topic><topic>Face recognition</topic><topic>Feature extraction</topic><topic>Humans</topic><topic>Markov Chains</topic><topic>Markov Network</topic><topic>Markov random fields</topic><topic>Multiple Classifiers</topic><topic>Training</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hwang, Wonjun</creatorcontrib><creatorcontrib>Kim, Junmo</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>IEEE transactions on image processing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Hwang, Wonjun</au><au>Kim, Junmo</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Markov Network-Based Unified Classifier for Face Recognition</atitle><jtitle>IEEE transactions on image processing</jtitle><stitle>TIP</stitle><addtitle>IEEE Trans Image Process</addtitle><date>2015-11</date><risdate>2015</risdate><volume>24</volume><issue>11</issue><spage>4263</spage><epage>4275</epage><pages>4263-4275</pages><issn>1057-7149</issn><eissn>1941-0042</eissn><coden>IIPRE4</coden><abstract>In this paper, we propose a novel unifying framework using a Markov network to learn the relationships among multiple classifiers. In face recognition, we assume that we have several complementary classifiers available, and assign observation nodes to the features of a query image and hidden nodes to those of gallery images. Under the Markov assumption, we connect each hidden node to its corresponding observation node and the hidden nodes of neighboring classifiers. For each observation-hidden node pair, we collect the set of gallery candidates most similar to the observation instance, and capture the relationship between the hidden nodes in terms of a similarity matrix among the retrieved gallery images. Posterior probabilities in the hidden nodes are computed using the belief propagation algorithm, and we use marginal probability as the new similarity value of the classifier. The novelty of our proposed framework lies in the method that considers classifier dependence using the results of each neighboring classifier. We present the extensive evaluation results for two different protocols, known and unknown image variation tests, using four publicly available databases: 1) the Face Recognition Grand Challenge ver. 2.0; 2) XM2VTS; 3) BANCA; and 4) Multi-PIE. The result shows that our framework consistently yields improved recognition rates in various situations.</abstract><cop>United States</cop><pub>IEEE</pub><pmid>26219095</pmid><doi>10.1109/TIP.2015.2460464</doi><tpages>13</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1057-7149 |
ispartof | IEEE transactions on image processing, 2015-11, Vol.24 (11), p.4263-4275 |
issn | 1057-7149 1941-0042 |
language | eng |
recordid | cdi_proquest_miscellaneous_1711535651 |
source | IEEE Electronic Library (IEL) |
subjects | Algorithms Biometric Identification - methods Databases, Factual Face Face - anatomy & histology Face recognition Feature extraction Humans Markov Chains Markov Network Markov random fields Multiple Classifiers Training |
title | Markov Network-Based Unified Classifier for Face Recognition |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-17T10%3A34%3A11IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Markov%20Network-Based%20Unified%20Classifier%20for%20Face%20Recognition&rft.jtitle=IEEE%20transactions%20on%20image%20processing&rft.au=Hwang,%20Wonjun&rft.date=2015-11&rft.volume=24&rft.issue=11&rft.spage=4263&rft.epage=4275&rft.pages=4263-4275&rft.issn=1057-7149&rft.eissn=1941-0042&rft.coden=IIPRE4&rft_id=info:doi/10.1109/TIP.2015.2460464&rft_dat=%3Cproquest_RIE%3E1711535651%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1711535651&rft_id=info:pmid/26219095&rft_ieee_id=7165634&rfr_iscdi=true |