The Topology of the Substrate Binding Clefts of Glycosyl Hydrolase Family 10 Xylanases Are Not Conserved

The crystal structures of family 10 xylanases indicate that the distal regions of their active sites are quite different, suggesting that the topology of the substrate binding clefts of these enzymes may vary. To test this hypothesis, we have investigated the rate and pattern of xylooligosaccharide...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Journal of biological chemistry 1998-11, Vol.273 (48), p.32187-32199
Hauptverfasser: Charnock, Simon J., Spurway, Tracey D., Xie, Hefang, Beylot, Marie-Hélène, Virden, Richard, Warren, R. Antony J., Hazlewood, Geoffrey P., Gilbert, Harry J.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 32199
container_issue 48
container_start_page 32187
container_title The Journal of biological chemistry
container_volume 273
creator Charnock, Simon J.
Spurway, Tracey D.
Xie, Hefang
Beylot, Marie-Hélène
Virden, Richard
Warren, R. Antony J.
Hazlewood, Geoffrey P.
Gilbert, Harry J.
description The crystal structures of family 10 xylanases indicate that the distal regions of their active sites are quite different, suggesting that the topology of the substrate binding clefts of these enzymes may vary. To test this hypothesis, we have investigated the rate and pattern of xylooligosaccharide cleavage by the family 10 enzymes, Pseudomonas fluorescens subsp.cellulosa xylanase A (XYLA) and Cellulomonas fimi exoglucanase, Cex. The data showed that Cex contained three glycone and two aglycone binding sites, while XYLA had three glycone and four aglycone binding sites, supporting the view that the topologies of substrate binding clefts in family 10 glycanases are not highly conserved. The importance of residues in the substrate binding cleft of XYLA in catalysis and ligand binding were evaluated using site-directed mutagenesis. In addition to providing insight into the function of residues in the glycone region of the active site, the data showed that the aromatic residues Phe-181, Tyr-255, and Tyr-220 play important roles in binding xylose moieties, via hydrophobic interactions, at subsites +1, +3, and +4, respectively. Interestingly, the F181A mutation caused a much larger reduction in the activity of the enzyme against xylooligosaccharides compared with xylan. These data, in conjunction with a previous study (Charnock, S. J., Lakey, J. H., Virden, R., Hughes, N., Sinnott, M. L., Hazlewood, G. P., Pickersgill, R., and Gilbert, H. J. (1997)J. Biol. Chem. 272, 2942–2951), suggest that the binding of xylooligosaccharides at the −2 and +1 subsites ensures that the substrates occupy the −1 and +1 subsites and thus preferentially form productive complexes with the enzyme. Loss of ligand binding at either subsite results in small substrates forming nonproductive complexes with XYLA by binding to distal regions of the substrate binding cleft.
doi_str_mv 10.1074/jbc.273.48.32187
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_17114992</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0021925819590688</els_id><sourcerecordid>17114992</sourcerecordid><originalsourceid>FETCH-LOGICAL-c447t-cabfbaf71003e5a557ebd3e74d7b4bd97eb54219e71727752132f7135a389c243</originalsourceid><addsrcrecordid>eNp1kM9rFDEUx4ModVu9exFyEG-z5teYibe62FYoenCF3kJ-vNlJyUzWZLYy_31Td_EgmEt47_uDxwehN5SsKZHiw711ayb5WnRrzmgnn6EVJR1veEvvnqMVIYw2irXdS3Reyj2pTyh6hs5Ux9hHJVdo2A6At2mfYtotOPV4rvOPgy1zNjPgz2HyYdrhTYR-Lk_6dVxcKkvEN4vPKZoC-MqMIS6YEny3RDPVVcGXGfC3NONNmgrkB_Cv0IvexAKvT_8F-nn1Zbu5aW6_X3_dXN42Tgg5N87Y3ppeUkI4tKZtJVjPQQovrbBe1bEVjCqQVDIpW0Y5q27eGt4pxwS_QO-Pvfucfh2gzHoMxUGsh0E6FE0lpUIpVo3kaHQ5lZKh1_scRpMXTYl-gqsrXF3hatHpP3Br5O2p-2BH8H8DJ5pVf3fUh7AbfocM2obkBhj_rfl0tEHl8BAg6-ICTA58jbhZ-xT-f8Mj_NSUfQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>17114992</pqid></control><display><type>article</type><title>The Topology of the Substrate Binding Clefts of Glycosyl Hydrolase Family 10 Xylanases Are Not Conserved</title><source>MEDLINE</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Alma/SFX Local Collection</source><creator>Charnock, Simon J. ; Spurway, Tracey D. ; Xie, Hefang ; Beylot, Marie-Hélène ; Virden, Richard ; Warren, R. Antony J. ; Hazlewood, Geoffrey P. ; Gilbert, Harry J.</creator><creatorcontrib>Charnock, Simon J. ; Spurway, Tracey D. ; Xie, Hefang ; Beylot, Marie-Hélène ; Virden, Richard ; Warren, R. Antony J. ; Hazlewood, Geoffrey P. ; Gilbert, Harry J.</creatorcontrib><description>The crystal structures of family 10 xylanases indicate that the distal regions of their active sites are quite different, suggesting that the topology of the substrate binding clefts of these enzymes may vary. To test this hypothesis, we have investigated the rate and pattern of xylooligosaccharide cleavage by the family 10 enzymes, Pseudomonas fluorescens subsp.cellulosa xylanase A (XYLA) and Cellulomonas fimi exoglucanase, Cex. The data showed that Cex contained three glycone and two aglycone binding sites, while XYLA had three glycone and four aglycone binding sites, supporting the view that the topologies of substrate binding clefts in family 10 glycanases are not highly conserved. The importance of residues in the substrate binding cleft of XYLA in catalysis and ligand binding were evaluated using site-directed mutagenesis. In addition to providing insight into the function of residues in the glycone region of the active site, the data showed that the aromatic residues Phe-181, Tyr-255, and Tyr-220 play important roles in binding xylose moieties, via hydrophobic interactions, at subsites +1, +3, and +4, respectively. Interestingly, the F181A mutation caused a much larger reduction in the activity of the enzyme against xylooligosaccharides compared with xylan. These data, in conjunction with a previous study (Charnock, S. J., Lakey, J. H., Virden, R., Hughes, N., Sinnott, M. L., Hazlewood, G. P., Pickersgill, R., and Gilbert, H. J. (1997)J. Biol. Chem. 272, 2942–2951), suggest that the binding of xylooligosaccharides at the −2 and +1 subsites ensures that the substrates occupy the −1 and +1 subsites and thus preferentially form productive complexes with the enzyme. Loss of ligand binding at either subsite results in small substrates forming nonproductive complexes with XYLA by binding to distal regions of the substrate binding cleft.</description><identifier>ISSN: 0021-9258</identifier><identifier>EISSN: 1083-351X</identifier><identifier>DOI: 10.1074/jbc.273.48.32187</identifier><identifier>PMID: 9822697</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>Amino Acid Sequence ; beta-Glucosidase - chemistry ; beta-Glucosidase - metabolism ; Catalysis ; Catalytic Domain ; Cellulomonas fimi ; Conserved Sequence ; Endo-1,4-beta Xylanases ; Glucan 1,3-beta-Glucosidase ; Gram-Positive Asporogenous Rods - enzymology ; Kinetics ; Models, Molecular ; Mutagenesis, Site-Directed ; Protein Conformation ; Pseudomonas fluorescens ; Pseudomonas fluorescens - enzymology ; Recombinant Proteins - chemistry ; Recombinant Proteins - metabolism ; Substrate Specificity ; Xylosidases - chemistry ; Xylosidases - metabolism</subject><ispartof>The Journal of biological chemistry, 1998-11, Vol.273 (48), p.32187-32199</ispartof><rights>1998 © 1998 ASBMB. Currently published by Elsevier Inc; originally published by American Society for Biochemistry and Molecular Biology.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c447t-cabfbaf71003e5a557ebd3e74d7b4bd97eb54219e71727752132f7135a389c243</citedby><cites>FETCH-LOGICAL-c447t-cabfbaf71003e5a557ebd3e74d7b4bd97eb54219e71727752132f7135a389c243</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27903,27904</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/9822697$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Charnock, Simon J.</creatorcontrib><creatorcontrib>Spurway, Tracey D.</creatorcontrib><creatorcontrib>Xie, Hefang</creatorcontrib><creatorcontrib>Beylot, Marie-Hélène</creatorcontrib><creatorcontrib>Virden, Richard</creatorcontrib><creatorcontrib>Warren, R. Antony J.</creatorcontrib><creatorcontrib>Hazlewood, Geoffrey P.</creatorcontrib><creatorcontrib>Gilbert, Harry J.</creatorcontrib><title>The Topology of the Substrate Binding Clefts of Glycosyl Hydrolase Family 10 Xylanases Are Not Conserved</title><title>The Journal of biological chemistry</title><addtitle>J Biol Chem</addtitle><description>The crystal structures of family 10 xylanases indicate that the distal regions of their active sites are quite different, suggesting that the topology of the substrate binding clefts of these enzymes may vary. To test this hypothesis, we have investigated the rate and pattern of xylooligosaccharide cleavage by the family 10 enzymes, Pseudomonas fluorescens subsp.cellulosa xylanase A (XYLA) and Cellulomonas fimi exoglucanase, Cex. The data showed that Cex contained three glycone and two aglycone binding sites, while XYLA had three glycone and four aglycone binding sites, supporting the view that the topologies of substrate binding clefts in family 10 glycanases are not highly conserved. The importance of residues in the substrate binding cleft of XYLA in catalysis and ligand binding were evaluated using site-directed mutagenesis. In addition to providing insight into the function of residues in the glycone region of the active site, the data showed that the aromatic residues Phe-181, Tyr-255, and Tyr-220 play important roles in binding xylose moieties, via hydrophobic interactions, at subsites +1, +3, and +4, respectively. Interestingly, the F181A mutation caused a much larger reduction in the activity of the enzyme against xylooligosaccharides compared with xylan. These data, in conjunction with a previous study (Charnock, S. J., Lakey, J. H., Virden, R., Hughes, N., Sinnott, M. L., Hazlewood, G. P., Pickersgill, R., and Gilbert, H. J. (1997)J. Biol. Chem. 272, 2942–2951), suggest that the binding of xylooligosaccharides at the −2 and +1 subsites ensures that the substrates occupy the −1 and +1 subsites and thus preferentially form productive complexes with the enzyme. Loss of ligand binding at either subsite results in small substrates forming nonproductive complexes with XYLA by binding to distal regions of the substrate binding cleft.</description><subject>Amino Acid Sequence</subject><subject>beta-Glucosidase - chemistry</subject><subject>beta-Glucosidase - metabolism</subject><subject>Catalysis</subject><subject>Catalytic Domain</subject><subject>Cellulomonas fimi</subject><subject>Conserved Sequence</subject><subject>Endo-1,4-beta Xylanases</subject><subject>Glucan 1,3-beta-Glucosidase</subject><subject>Gram-Positive Asporogenous Rods - enzymology</subject><subject>Kinetics</subject><subject>Models, Molecular</subject><subject>Mutagenesis, Site-Directed</subject><subject>Protein Conformation</subject><subject>Pseudomonas fluorescens</subject><subject>Pseudomonas fluorescens - enzymology</subject><subject>Recombinant Proteins - chemistry</subject><subject>Recombinant Proteins - metabolism</subject><subject>Substrate Specificity</subject><subject>Xylosidases - chemistry</subject><subject>Xylosidases - metabolism</subject><issn>0021-9258</issn><issn>1083-351X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1998</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp1kM9rFDEUx4ModVu9exFyEG-z5teYibe62FYoenCF3kJ-vNlJyUzWZLYy_31Td_EgmEt47_uDxwehN5SsKZHiw711ayb5WnRrzmgnn6EVJR1veEvvnqMVIYw2irXdS3Reyj2pTyh6hs5Ux9hHJVdo2A6At2mfYtotOPV4rvOPgy1zNjPgz2HyYdrhTYR-Lk_6dVxcKkvEN4vPKZoC-MqMIS6YEny3RDPVVcGXGfC3NONNmgrkB_Cv0IvexAKvT_8F-nn1Zbu5aW6_X3_dXN42Tgg5N87Y3ppeUkI4tKZtJVjPQQovrbBe1bEVjCqQVDIpW0Y5q27eGt4pxwS_QO-Pvfucfh2gzHoMxUGsh0E6FE0lpUIpVo3kaHQ5lZKh1_scRpMXTYl-gqsrXF3hatHpP3Br5O2p-2BH8H8DJ5pVf3fUh7AbfocM2obkBhj_rfl0tEHl8BAg6-ICTA58jbhZ-xT-f8Mj_NSUfQ</recordid><startdate>19981127</startdate><enddate>19981127</enddate><creator>Charnock, Simon J.</creator><creator>Spurway, Tracey D.</creator><creator>Xie, Hefang</creator><creator>Beylot, Marie-Hélène</creator><creator>Virden, Richard</creator><creator>Warren, R. Antony J.</creator><creator>Hazlewood, Geoffrey P.</creator><creator>Gilbert, Harry J.</creator><general>Elsevier Inc</general><general>American Society for Biochemistry and Molecular Biology</general><scope>6I.</scope><scope>AAFTH</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QL</scope><scope>C1K</scope></search><sort><creationdate>19981127</creationdate><title>The Topology of the Substrate Binding Clefts of Glycosyl Hydrolase Family 10 Xylanases Are Not Conserved</title><author>Charnock, Simon J. ; Spurway, Tracey D. ; Xie, Hefang ; Beylot, Marie-Hélène ; Virden, Richard ; Warren, R. Antony J. ; Hazlewood, Geoffrey P. ; Gilbert, Harry J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c447t-cabfbaf71003e5a557ebd3e74d7b4bd97eb54219e71727752132f7135a389c243</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1998</creationdate><topic>Amino Acid Sequence</topic><topic>beta-Glucosidase - chemistry</topic><topic>beta-Glucosidase - metabolism</topic><topic>Catalysis</topic><topic>Catalytic Domain</topic><topic>Cellulomonas fimi</topic><topic>Conserved Sequence</topic><topic>Endo-1,4-beta Xylanases</topic><topic>Glucan 1,3-beta-Glucosidase</topic><topic>Gram-Positive Asporogenous Rods - enzymology</topic><topic>Kinetics</topic><topic>Models, Molecular</topic><topic>Mutagenesis, Site-Directed</topic><topic>Protein Conformation</topic><topic>Pseudomonas fluorescens</topic><topic>Pseudomonas fluorescens - enzymology</topic><topic>Recombinant Proteins - chemistry</topic><topic>Recombinant Proteins - metabolism</topic><topic>Substrate Specificity</topic><topic>Xylosidases - chemistry</topic><topic>Xylosidases - metabolism</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Charnock, Simon J.</creatorcontrib><creatorcontrib>Spurway, Tracey D.</creatorcontrib><creatorcontrib>Xie, Hefang</creatorcontrib><creatorcontrib>Beylot, Marie-Hélène</creatorcontrib><creatorcontrib>Virden, Richard</creatorcontrib><creatorcontrib>Warren, R. Antony J.</creatorcontrib><creatorcontrib>Hazlewood, Geoffrey P.</creatorcontrib><creatorcontrib>Gilbert, Harry J.</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Environmental Sciences and Pollution Management</collection><jtitle>The Journal of biological chemistry</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Charnock, Simon J.</au><au>Spurway, Tracey D.</au><au>Xie, Hefang</au><au>Beylot, Marie-Hélène</au><au>Virden, Richard</au><au>Warren, R. Antony J.</au><au>Hazlewood, Geoffrey P.</au><au>Gilbert, Harry J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The Topology of the Substrate Binding Clefts of Glycosyl Hydrolase Family 10 Xylanases Are Not Conserved</atitle><jtitle>The Journal of biological chemistry</jtitle><addtitle>J Biol Chem</addtitle><date>1998-11-27</date><risdate>1998</risdate><volume>273</volume><issue>48</issue><spage>32187</spage><epage>32199</epage><pages>32187-32199</pages><issn>0021-9258</issn><eissn>1083-351X</eissn><abstract>The crystal structures of family 10 xylanases indicate that the distal regions of their active sites are quite different, suggesting that the topology of the substrate binding clefts of these enzymes may vary. To test this hypothesis, we have investigated the rate and pattern of xylooligosaccharide cleavage by the family 10 enzymes, Pseudomonas fluorescens subsp.cellulosa xylanase A (XYLA) and Cellulomonas fimi exoglucanase, Cex. The data showed that Cex contained three glycone and two aglycone binding sites, while XYLA had three glycone and four aglycone binding sites, supporting the view that the topologies of substrate binding clefts in family 10 glycanases are not highly conserved. The importance of residues in the substrate binding cleft of XYLA in catalysis and ligand binding were evaluated using site-directed mutagenesis. In addition to providing insight into the function of residues in the glycone region of the active site, the data showed that the aromatic residues Phe-181, Tyr-255, and Tyr-220 play important roles in binding xylose moieties, via hydrophobic interactions, at subsites +1, +3, and +4, respectively. Interestingly, the F181A mutation caused a much larger reduction in the activity of the enzyme against xylooligosaccharides compared with xylan. These data, in conjunction with a previous study (Charnock, S. J., Lakey, J. H., Virden, R., Hughes, N., Sinnott, M. L., Hazlewood, G. P., Pickersgill, R., and Gilbert, H. J. (1997)J. Biol. Chem. 272, 2942–2951), suggest that the binding of xylooligosaccharides at the −2 and +1 subsites ensures that the substrates occupy the −1 and +1 subsites and thus preferentially form productive complexes with the enzyme. Loss of ligand binding at either subsite results in small substrates forming nonproductive complexes with XYLA by binding to distal regions of the substrate binding cleft.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>9822697</pmid><doi>10.1074/jbc.273.48.32187</doi><tpages>13</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0021-9258
ispartof The Journal of biological chemistry, 1998-11, Vol.273 (48), p.32187-32199
issn 0021-9258
1083-351X
language eng
recordid cdi_proquest_miscellaneous_17114992
source MEDLINE; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Alma/SFX Local Collection
subjects Amino Acid Sequence
beta-Glucosidase - chemistry
beta-Glucosidase - metabolism
Catalysis
Catalytic Domain
Cellulomonas fimi
Conserved Sequence
Endo-1,4-beta Xylanases
Glucan 1,3-beta-Glucosidase
Gram-Positive Asporogenous Rods - enzymology
Kinetics
Models, Molecular
Mutagenesis, Site-Directed
Protein Conformation
Pseudomonas fluorescens
Pseudomonas fluorescens - enzymology
Recombinant Proteins - chemistry
Recombinant Proteins - metabolism
Substrate Specificity
Xylosidases - chemistry
Xylosidases - metabolism
title The Topology of the Substrate Binding Clefts of Glycosyl Hydrolase Family 10 Xylanases Are Not Conserved
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-26T18%3A16%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20Topology%20of%20the%20Substrate%20Binding%20Clefts%20of%20Glycosyl%20Hydrolase%20Family%2010%20Xylanases%20Are%20Not%20Conserved&rft.jtitle=The%20Journal%20of%20biological%20chemistry&rft.au=Charnock,%20Simon%20J.&rft.date=1998-11-27&rft.volume=273&rft.issue=48&rft.spage=32187&rft.epage=32199&rft.pages=32187-32199&rft.issn=0021-9258&rft.eissn=1083-351X&rft_id=info:doi/10.1074/jbc.273.48.32187&rft_dat=%3Cproquest_cross%3E17114992%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=17114992&rft_id=info:pmid/9822697&rft_els_id=S0021925819590688&rfr_iscdi=true