Agronomic performance of chromosomes 1B and T1BL.1RS near-isolines in the spring bread wheat Seri M82

The T1BL.1RS wheat (Triticum aestivum L.) - rye (Secale cereale L.) translocations have been of particular interest and are widely used in bread wheat breeding programs. The objective of this study was to determine the effect of the T1BL.1RS chromosome on grain yield and its components using 20 near...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Euphytica 1998-01, Vol.103 (2), p.195-202
Hauptverfasser: Villareal, R.L. (International Maize and Wheat Improvement Center, Mexico, D.F. (Mexico).), Banuelos, O, Mujeeb-Kazi, A, Rajaram, S
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The T1BL.1RS wheat (Triticum aestivum L.) - rye (Secale cereale L.) translocations have been of particular interest and are widely used in bread wheat breeding programs. The objective of this study was to determine the effect of the T1BL.1RS chromosome on grain yield and its components using 20 near-isolines of spring bread wheat cultivar 'Seri M82' (10 homozygous for chromosome 1B substitution and 10 homozygous for T1BL.1RS). The test lines have been produced by substituting the 1B chromosome in Seri M82 (T1BL.1RS, T1BL.1RS) through backrossing. Two field experiments were evaluated under optimum (five irrigations) and reduced (one irrigation) moisture conditions for two consecutive production cycles at the Mexican National Agricultural Research Institute, Ciudad Obregon, Sonora, Mexico. The presence of T1BL.1RS had a significant effect on grain yield, harvest index, grains/m^sup 2^, grains/spike, 1000-grain weight, test weight, flowering date and physiological maturity in both moisture conditions. The agronomic advantage of the 1B substitution lines on above-ground biomass yield at maturity, spikes/m^sup 2^and grain-filling duration was expressed only under the optimum moisture condition. The presence of T1BL.1RS increased grain yield 1.6% and 11.3% for optimum and reduced moisture conditions, respectively. These results encourage further use of T1BL.1RS wheats in improving agronomic traits, especially for reduced irrigation or rainfed environments.[PUBLICATION ABSTRACT]
ISSN:0014-2336
1573-5060
DOI:10.1023/A:1018392002909