Evaluating Discrimination of Risk Prediction Models: The C Statistic

Risk prediction models help clinicians develop personalized treatments for patients. The models generally use variables measured at one time point to estimate the probability of an outcome occurring within a given time in the future. It is essential to assess the performance of a risk prediction mod...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:JAMA : the journal of the American Medical Association 2015-09, Vol.314 (10), p.1063-1064
Hauptverfasser: Pencina, Michael J, D’Agostino, Ralph B
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1064
container_issue 10
container_start_page 1063
container_title JAMA : the journal of the American Medical Association
container_volume 314
creator Pencina, Michael J
D’Agostino, Ralph B
description Risk prediction models help clinicians develop personalized treatments for patients. The models generally use variables measured at one time point to estimate the probability of an outcome occurring within a given time in the future. It is essential to assess the performance of a risk prediction model in the setting in which it will be used. This is done by evaluating the model's discrimination and calibration. Discrimination refers to the ability of the model to separate individuals who develop events from those who do not. In time-to-event settings, discrimination is the ability of the model to predict who will develop an event earlier and who will develop an event later or not at all. Calibration measures how accurately the model's predictions match overall observed event rates. Here, Pencina and Agostino present a guide to statistics and methods that characterizes the strengths and limitations of the C statistic as a measure of a risk prediction model's ability to discriminate between and predict future events.
doi_str_mv 10.1001/jama.2015.11082
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1710985838</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ama_id>2434669</ama_id><sourcerecordid>3813851631</sourcerecordid><originalsourceid>FETCH-LOGICAL-a298t-98cb13119afc4405518a6269ef53239db4fbf6f596d3c7c5152495aee06a1f283</originalsourceid><addsrcrecordid>eNpdkLtPwzAQhy0EoqUwIzGgSCwsaX1-xWZDbXlIRSAoc-QkNqTkUeIEif8ep4UOeLF8_u6nuw-hU8BjwBgmK13qMcHAxwBYkj00BE5lSLmS-2iIsZJhxCQboCPnVtgfoNEhGhBBmYw4H6LZ_EsXnW7z6i2Y5S5t8jKv_LOugtoGz7n7CJ4ak-XppvRQZ6ZwV8Hy3QTT4KX1oGvz9BgdWF04c_J7j9DrzXw5vQsXj7f30-tFqImSbahkmgAFUNqmjGHOQWpBhDKWU0JVljCbWGG5EhlNo5QDJ0xxbQwWGiyRdIQut7nrpv7sjGvj0o9sikJXpu5cDBH4jbmkPXrxD13VXVP56XqKEYIJAU9NtlTa1M41xsZrL0A33zHguBcc94LjXnC8Eew7zn9zu6Q02Y7_M-qBsy3QN-5-GWVCKPoDNql88w</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1714220221</pqid></control><display><type>article</type><title>Evaluating Discrimination of Risk Prediction Models: The C Statistic</title><source>MEDLINE</source><source>American Medical Association Journals</source><creator>Pencina, Michael J ; D’Agostino, Ralph B</creator><creatorcontrib>Pencina, Michael J ; D’Agostino, Ralph B</creatorcontrib><description>Risk prediction models help clinicians develop personalized treatments for patients. The models generally use variables measured at one time point to estimate the probability of an outcome occurring within a given time in the future. It is essential to assess the performance of a risk prediction model in the setting in which it will be used. This is done by evaluating the model's discrimination and calibration. Discrimination refers to the ability of the model to separate individuals who develop events from those who do not. In time-to-event settings, discrimination is the ability of the model to predict who will develop an event earlier and who will develop an event later or not at all. Calibration measures how accurately the model's predictions match overall observed event rates. Here, Pencina and Agostino present a guide to statistics and methods that characterizes the strengths and limitations of the C statistic as a measure of a risk prediction model's ability to discriminate between and predict future events.</description><identifier>ISSN: 0098-7484</identifier><identifier>EISSN: 1538-3598</identifier><identifier>DOI: 10.1001/jama.2015.11082</identifier><identifier>PMID: 26348755</identifier><identifier>CODEN: JAMAAP</identifier><language>eng</language><publisher>United States: American Medical Association</publisher><subject>Atrial Fibrillation - complications ; Discrimination ; Female ; Heart Failure - complications ; Humans ; Male ; Medical treatment ; Predictions ; Probability ; Risk assessment ; Statistics ; Stroke - etiology ; Thromboembolism - etiology</subject><ispartof>JAMA : the journal of the American Medical Association, 2015-09, Vol.314 (10), p.1063-1064</ispartof><rights>Copyright American Medical Association Sep 8, 2015</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://jamanetwork.com/journals/jama/articlepdf/10.1001/jama.2015.11082$$EPDF$$P50$$Gama$$H</linktopdf><linktohtml>$$Uhttps://jamanetwork.com/journals/jama/fullarticle/10.1001/jama.2015.11082$$EHTML$$P50$$Gama$$H</linktohtml><link.rule.ids>64,314,780,784,3340,27924,27925,76489,76492</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/26348755$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Pencina, Michael J</creatorcontrib><creatorcontrib>D’Agostino, Ralph B</creatorcontrib><title>Evaluating Discrimination of Risk Prediction Models: The C Statistic</title><title>JAMA : the journal of the American Medical Association</title><addtitle>JAMA</addtitle><description>Risk prediction models help clinicians develop personalized treatments for patients. The models generally use variables measured at one time point to estimate the probability of an outcome occurring within a given time in the future. It is essential to assess the performance of a risk prediction model in the setting in which it will be used. This is done by evaluating the model's discrimination and calibration. Discrimination refers to the ability of the model to separate individuals who develop events from those who do not. In time-to-event settings, discrimination is the ability of the model to predict who will develop an event earlier and who will develop an event later or not at all. Calibration measures how accurately the model's predictions match overall observed event rates. Here, Pencina and Agostino present a guide to statistics and methods that characterizes the strengths and limitations of the C statistic as a measure of a risk prediction model's ability to discriminate between and predict future events.</description><subject>Atrial Fibrillation - complications</subject><subject>Discrimination</subject><subject>Female</subject><subject>Heart Failure - complications</subject><subject>Humans</subject><subject>Male</subject><subject>Medical treatment</subject><subject>Predictions</subject><subject>Probability</subject><subject>Risk assessment</subject><subject>Statistics</subject><subject>Stroke - etiology</subject><subject>Thromboembolism - etiology</subject><issn>0098-7484</issn><issn>1538-3598</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpdkLtPwzAQhy0EoqUwIzGgSCwsaX1-xWZDbXlIRSAoc-QkNqTkUeIEif8ep4UOeLF8_u6nuw-hU8BjwBgmK13qMcHAxwBYkj00BE5lSLmS-2iIsZJhxCQboCPnVtgfoNEhGhBBmYw4H6LZ_EsXnW7z6i2Y5S5t8jKv_LOugtoGz7n7CJ4ak-XppvRQZ6ZwV8Hy3QTT4KX1oGvz9BgdWF04c_J7j9DrzXw5vQsXj7f30-tFqImSbahkmgAFUNqmjGHOQWpBhDKWU0JVljCbWGG5EhlNo5QDJ0xxbQwWGiyRdIQut7nrpv7sjGvj0o9sikJXpu5cDBH4jbmkPXrxD13VXVP56XqKEYIJAU9NtlTa1M41xsZrL0A33zHguBcc94LjXnC8Eew7zn9zu6Q02Y7_M-qBsy3QN-5-GWVCKPoDNql88w</recordid><startdate>20150908</startdate><enddate>20150908</enddate><creator>Pencina, Michael J</creator><creator>D’Agostino, Ralph B</creator><general>American Medical Association</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QL</scope><scope>7QP</scope><scope>7TK</scope><scope>7TS</scope><scope>7U7</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>K9.</scope><scope>M7N</scope><scope>NAPCQ</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope></search><sort><creationdate>20150908</creationdate><title>Evaluating Discrimination of Risk Prediction Models: The C Statistic</title><author>Pencina, Michael J ; D’Agostino, Ralph B</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a298t-98cb13119afc4405518a6269ef53239db4fbf6f596d3c7c5152495aee06a1f283</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Atrial Fibrillation - complications</topic><topic>Discrimination</topic><topic>Female</topic><topic>Heart Failure - complications</topic><topic>Humans</topic><topic>Male</topic><topic>Medical treatment</topic><topic>Predictions</topic><topic>Probability</topic><topic>Risk assessment</topic><topic>Statistics</topic><topic>Stroke - etiology</topic><topic>Thromboembolism - etiology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Pencina, Michael J</creatorcontrib><creatorcontrib>D’Agostino, Ralph B</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Physical Education Index</collection><collection>Toxicology Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Nursing &amp; Allied Health Premium</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>JAMA : the journal of the American Medical Association</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Pencina, Michael J</au><au>D’Agostino, Ralph B</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Evaluating Discrimination of Risk Prediction Models: The C Statistic</atitle><jtitle>JAMA : the journal of the American Medical Association</jtitle><addtitle>JAMA</addtitle><date>2015-09-08</date><risdate>2015</risdate><volume>314</volume><issue>10</issue><spage>1063</spage><epage>1064</epage><pages>1063-1064</pages><issn>0098-7484</issn><eissn>1538-3598</eissn><coden>JAMAAP</coden><abstract>Risk prediction models help clinicians develop personalized treatments for patients. The models generally use variables measured at one time point to estimate the probability of an outcome occurring within a given time in the future. It is essential to assess the performance of a risk prediction model in the setting in which it will be used. This is done by evaluating the model's discrimination and calibration. Discrimination refers to the ability of the model to separate individuals who develop events from those who do not. In time-to-event settings, discrimination is the ability of the model to predict who will develop an event earlier and who will develop an event later or not at all. Calibration measures how accurately the model's predictions match overall observed event rates. Here, Pencina and Agostino present a guide to statistics and methods that characterizes the strengths and limitations of the C statistic as a measure of a risk prediction model's ability to discriminate between and predict future events.</abstract><cop>United States</cop><pub>American Medical Association</pub><pmid>26348755</pmid><doi>10.1001/jama.2015.11082</doi><tpages>2</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0098-7484
ispartof JAMA : the journal of the American Medical Association, 2015-09, Vol.314 (10), p.1063-1064
issn 0098-7484
1538-3598
language eng
recordid cdi_proquest_miscellaneous_1710985838
source MEDLINE; American Medical Association Journals
subjects Atrial Fibrillation - complications
Discrimination
Female
Heart Failure - complications
Humans
Male
Medical treatment
Predictions
Probability
Risk assessment
Statistics
Stroke - etiology
Thromboembolism - etiology
title Evaluating Discrimination of Risk Prediction Models: The C Statistic
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T10%3A33%3A42IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Evaluating%20Discrimination%20of%20Risk%20Prediction%20Models:%20The%20C%20Statistic&rft.jtitle=JAMA%20:%20the%20journal%20of%20the%20American%20Medical%20Association&rft.au=Pencina,%20Michael%20J&rft.date=2015-09-08&rft.volume=314&rft.issue=10&rft.spage=1063&rft.epage=1064&rft.pages=1063-1064&rft.issn=0098-7484&rft.eissn=1538-3598&rft.coden=JAMAAP&rft_id=info:doi/10.1001/jama.2015.11082&rft_dat=%3Cproquest_cross%3E3813851631%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1714220221&rft_id=info:pmid/26348755&rft_ama_id=2434669&rfr_iscdi=true