Evaluating Discrimination of Risk Prediction Models: The C Statistic
Risk prediction models help clinicians develop personalized treatments for patients. The models generally use variables measured at one time point to estimate the probability of an outcome occurring within a given time in the future. It is essential to assess the performance of a risk prediction mod...
Gespeichert in:
Veröffentlicht in: | JAMA : the journal of the American Medical Association 2015-09, Vol.314 (10), p.1063-1064 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1064 |
---|---|
container_issue | 10 |
container_start_page | 1063 |
container_title | JAMA : the journal of the American Medical Association |
container_volume | 314 |
creator | Pencina, Michael J D’Agostino, Ralph B |
description | Risk prediction models help clinicians develop personalized treatments for patients. The models generally use variables measured at one time point to estimate the probability of an outcome occurring within a given time in the future. It is essential to assess the performance of a risk prediction model in the setting in which it will be used. This is done by evaluating the model's discrimination and calibration. Discrimination refers to the ability of the model to separate individuals who develop events from those who do not. In time-to-event settings, discrimination is the ability of the model to predict who will develop an event earlier and who will develop an event later or not at all. Calibration measures how accurately the model's predictions match overall observed event rates. Here, Pencina and Agostino present a guide to statistics and methods that characterizes the strengths and limitations of the C statistic as a measure of a risk prediction model's ability to discriminate between and predict future events. |
doi_str_mv | 10.1001/jama.2015.11082 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1710985838</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ama_id>2434669</ama_id><sourcerecordid>3813851631</sourcerecordid><originalsourceid>FETCH-LOGICAL-a298t-98cb13119afc4405518a6269ef53239db4fbf6f596d3c7c5152495aee06a1f283</originalsourceid><addsrcrecordid>eNpdkLtPwzAQhy0EoqUwIzGgSCwsaX1-xWZDbXlIRSAoc-QkNqTkUeIEif8ep4UOeLF8_u6nuw-hU8BjwBgmK13qMcHAxwBYkj00BE5lSLmS-2iIsZJhxCQboCPnVtgfoNEhGhBBmYw4H6LZ_EsXnW7z6i2Y5S5t8jKv_LOugtoGz7n7CJ4ak-XppvRQZ6ZwV8Hy3QTT4KX1oGvz9BgdWF04c_J7j9DrzXw5vQsXj7f30-tFqImSbahkmgAFUNqmjGHOQWpBhDKWU0JVljCbWGG5EhlNo5QDJ0xxbQwWGiyRdIQut7nrpv7sjGvj0o9sikJXpu5cDBH4jbmkPXrxD13VXVP56XqKEYIJAU9NtlTa1M41xsZrL0A33zHguBcc94LjXnC8Eew7zn9zu6Q02Y7_M-qBsy3QN-5-GWVCKPoDNql88w</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1714220221</pqid></control><display><type>article</type><title>Evaluating Discrimination of Risk Prediction Models: The C Statistic</title><source>MEDLINE</source><source>American Medical Association Journals</source><creator>Pencina, Michael J ; D’Agostino, Ralph B</creator><creatorcontrib>Pencina, Michael J ; D’Agostino, Ralph B</creatorcontrib><description>Risk prediction models help clinicians develop personalized treatments for patients. The models generally use variables measured at one time point to estimate the probability of an outcome occurring within a given time in the future. It is essential to assess the performance of a risk prediction model in the setting in which it will be used. This is done by evaluating the model's discrimination and calibration. Discrimination refers to the ability of the model to separate individuals who develop events from those who do not. In time-to-event settings, discrimination is the ability of the model to predict who will develop an event earlier and who will develop an event later or not at all. Calibration measures how accurately the model's predictions match overall observed event rates. Here, Pencina and Agostino present a guide to statistics and methods that characterizes the strengths and limitations of the C statistic as a measure of a risk prediction model's ability to discriminate between and predict future events.</description><identifier>ISSN: 0098-7484</identifier><identifier>EISSN: 1538-3598</identifier><identifier>DOI: 10.1001/jama.2015.11082</identifier><identifier>PMID: 26348755</identifier><identifier>CODEN: JAMAAP</identifier><language>eng</language><publisher>United States: American Medical Association</publisher><subject>Atrial Fibrillation - complications ; Discrimination ; Female ; Heart Failure - complications ; Humans ; Male ; Medical treatment ; Predictions ; Probability ; Risk assessment ; Statistics ; Stroke - etiology ; Thromboembolism - etiology</subject><ispartof>JAMA : the journal of the American Medical Association, 2015-09, Vol.314 (10), p.1063-1064</ispartof><rights>Copyright American Medical Association Sep 8, 2015</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://jamanetwork.com/journals/jama/articlepdf/10.1001/jama.2015.11082$$EPDF$$P50$$Gama$$H</linktopdf><linktohtml>$$Uhttps://jamanetwork.com/journals/jama/fullarticle/10.1001/jama.2015.11082$$EHTML$$P50$$Gama$$H</linktohtml><link.rule.ids>64,314,780,784,3340,27924,27925,76489,76492</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/26348755$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Pencina, Michael J</creatorcontrib><creatorcontrib>D’Agostino, Ralph B</creatorcontrib><title>Evaluating Discrimination of Risk Prediction Models: The C Statistic</title><title>JAMA : the journal of the American Medical Association</title><addtitle>JAMA</addtitle><description>Risk prediction models help clinicians develop personalized treatments for patients. The models generally use variables measured at one time point to estimate the probability of an outcome occurring within a given time in the future. It is essential to assess the performance of a risk prediction model in the setting in which it will be used. This is done by evaluating the model's discrimination and calibration. Discrimination refers to the ability of the model to separate individuals who develop events from those who do not. In time-to-event settings, discrimination is the ability of the model to predict who will develop an event earlier and who will develop an event later or not at all. Calibration measures how accurately the model's predictions match overall observed event rates. Here, Pencina and Agostino present a guide to statistics and methods that characterizes the strengths and limitations of the C statistic as a measure of a risk prediction model's ability to discriminate between and predict future events.</description><subject>Atrial Fibrillation - complications</subject><subject>Discrimination</subject><subject>Female</subject><subject>Heart Failure - complications</subject><subject>Humans</subject><subject>Male</subject><subject>Medical treatment</subject><subject>Predictions</subject><subject>Probability</subject><subject>Risk assessment</subject><subject>Statistics</subject><subject>Stroke - etiology</subject><subject>Thromboembolism - etiology</subject><issn>0098-7484</issn><issn>1538-3598</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpdkLtPwzAQhy0EoqUwIzGgSCwsaX1-xWZDbXlIRSAoc-QkNqTkUeIEif8ep4UOeLF8_u6nuw-hU8BjwBgmK13qMcHAxwBYkj00BE5lSLmS-2iIsZJhxCQboCPnVtgfoNEhGhBBmYw4H6LZ_EsXnW7z6i2Y5S5t8jKv_LOugtoGz7n7CJ4ak-XppvRQZ6ZwV8Hy3QTT4KX1oGvz9BgdWF04c_J7j9DrzXw5vQsXj7f30-tFqImSbahkmgAFUNqmjGHOQWpBhDKWU0JVljCbWGG5EhlNo5QDJ0xxbQwWGiyRdIQut7nrpv7sjGvj0o9sikJXpu5cDBH4jbmkPXrxD13VXVP56XqKEYIJAU9NtlTa1M41xsZrL0A33zHguBcc94LjXnC8Eew7zn9zu6Q02Y7_M-qBsy3QN-5-GWVCKPoDNql88w</recordid><startdate>20150908</startdate><enddate>20150908</enddate><creator>Pencina, Michael J</creator><creator>D’Agostino, Ralph B</creator><general>American Medical Association</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QL</scope><scope>7QP</scope><scope>7TK</scope><scope>7TS</scope><scope>7U7</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>K9.</scope><scope>M7N</scope><scope>NAPCQ</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope></search><sort><creationdate>20150908</creationdate><title>Evaluating Discrimination of Risk Prediction Models: The C Statistic</title><author>Pencina, Michael J ; D’Agostino, Ralph B</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a298t-98cb13119afc4405518a6269ef53239db4fbf6f596d3c7c5152495aee06a1f283</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Atrial Fibrillation - complications</topic><topic>Discrimination</topic><topic>Female</topic><topic>Heart Failure - complications</topic><topic>Humans</topic><topic>Male</topic><topic>Medical treatment</topic><topic>Predictions</topic><topic>Probability</topic><topic>Risk assessment</topic><topic>Statistics</topic><topic>Stroke - etiology</topic><topic>Thromboembolism - etiology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Pencina, Michael J</creatorcontrib><creatorcontrib>D’Agostino, Ralph B</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Physical Education Index</collection><collection>Toxicology Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Nursing & Allied Health Premium</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>JAMA : the journal of the American Medical Association</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Pencina, Michael J</au><au>D’Agostino, Ralph B</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Evaluating Discrimination of Risk Prediction Models: The C Statistic</atitle><jtitle>JAMA : the journal of the American Medical Association</jtitle><addtitle>JAMA</addtitle><date>2015-09-08</date><risdate>2015</risdate><volume>314</volume><issue>10</issue><spage>1063</spage><epage>1064</epage><pages>1063-1064</pages><issn>0098-7484</issn><eissn>1538-3598</eissn><coden>JAMAAP</coden><abstract>Risk prediction models help clinicians develop personalized treatments for patients. The models generally use variables measured at one time point to estimate the probability of an outcome occurring within a given time in the future. It is essential to assess the performance of a risk prediction model in the setting in which it will be used. This is done by evaluating the model's discrimination and calibration. Discrimination refers to the ability of the model to separate individuals who develop events from those who do not. In time-to-event settings, discrimination is the ability of the model to predict who will develop an event earlier and who will develop an event later or not at all. Calibration measures how accurately the model's predictions match overall observed event rates. Here, Pencina and Agostino present a guide to statistics and methods that characterizes the strengths and limitations of the C statistic as a measure of a risk prediction model's ability to discriminate between and predict future events.</abstract><cop>United States</cop><pub>American Medical Association</pub><pmid>26348755</pmid><doi>10.1001/jama.2015.11082</doi><tpages>2</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0098-7484 |
ispartof | JAMA : the journal of the American Medical Association, 2015-09, Vol.314 (10), p.1063-1064 |
issn | 0098-7484 1538-3598 |
language | eng |
recordid | cdi_proquest_miscellaneous_1710985838 |
source | MEDLINE; American Medical Association Journals |
subjects | Atrial Fibrillation - complications Discrimination Female Heart Failure - complications Humans Male Medical treatment Predictions Probability Risk assessment Statistics Stroke - etiology Thromboembolism - etiology |
title | Evaluating Discrimination of Risk Prediction Models: The C Statistic |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T10%3A33%3A42IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Evaluating%20Discrimination%20of%20Risk%20Prediction%20Models:%20The%20C%20Statistic&rft.jtitle=JAMA%20:%20the%20journal%20of%20the%20American%20Medical%20Association&rft.au=Pencina,%20Michael%20J&rft.date=2015-09-08&rft.volume=314&rft.issue=10&rft.spage=1063&rft.epage=1064&rft.pages=1063-1064&rft.issn=0098-7484&rft.eissn=1538-3598&rft.coden=JAMAAP&rft_id=info:doi/10.1001/jama.2015.11082&rft_dat=%3Cproquest_cross%3E3813851631%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1714220221&rft_id=info:pmid/26348755&rft_ama_id=2434669&rfr_iscdi=true |