Alkali metal and rare earth element evolution of rock-forming minerals from the Gatumba area pegmatites (Rwanda): Quantitative assessment of crystal-melt fractionation in the regional zonation of pegmatite groups

This study presents a general model for the evaluation of Rayleigh fractional crystallisation as the principal differentiation mechanism in the formation of regionally zoned common and rare-element pegmatites. The magmatic evolution of these systems from a granitic source is reconstructed by means o...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Geochimica et cosmochimica acta 2014-05, Vol.132, p.349-374
Hauptverfasser: Hulsbosch, Niels, Hertogen, Jan, Dewaele, Stijn, André, Luc, Muchez, Philippe
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 374
container_issue
container_start_page 349
container_title Geochimica et cosmochimica acta
container_volume 132
creator Hulsbosch, Niels
Hertogen, Jan
Dewaele, Stijn
André, Luc
Muchez, Philippe
description This study presents a general model for the evaluation of Rayleigh fractional crystallisation as the principal differentiation mechanism in the formation of regionally zoned common and rare-element pegmatites. The magmatic evolution of these systems from a granitic source is reconstructed by means of alkali element and rare earth element (REE) analyses of rock-forming minerals (feldspars, micas and tourmaline), which represent a whole sequence of regional pegmatite zonation. The Gatumba pegmatite field (Rwanda, Central Africa) is chosen as case study area because of its well-developed regional zonation sequence. The pegmatites are spatially and temporally related to peraluminous G4-granites (986±10Ma). The regional zonation is developed around a G4-granite and the proximal pegmatites grade outwardly into biotite, two-mica and muscovite pegmatites. Rare-element (Nb–Ta–Sn) pegmatites occur most distal from the granite. Alkali metal fractionation trends in pegmatitic K-feldspar (Rb 350–6000ppm, Cs 2–160ppm) and muscovite (Rb 670–7000ppm, Cs 10–150ppm) define a single and continuous trend, which is modelled by Rayleigh fractional crystallisation, starting from a parental granite composition (G4-composition: K 3.1wt%, Rb 222ppm, Cs 11ppm). The fractionation model shows, moreover, that the pegmatites adjacent to the parental pluton are the least fractionated, and the distal pegmatites are the most fractionated. Biotite pegmatites form from 0% to 69% crystallisation, two-mica pegmatites from 69% to 92%, and muscovite pegmatites from 92% crystallisation onwards. The extreme Rb- and Cs-enrichment in rare-element pegmatites requires at least 98% fractionation of the initial G4-granite composition. Mathematical derivation of the K/Rb versus Cs relationship in K-feldspars confirms Rayleigh fractional crystallisation as the main differentiation process in the development of regional pegmatite zonation. Moreover (1) it demonstrates the continuity of the fractionation process from biotite pegmatites to rare-element pegmatite and indicates a genetic link among them; and (2) it allows a general evaluation of pegmatite fields in terms of system parameters, i.e. the initial element concentration in the granitic melt and partition coefficients. REE patterns of the rock-forming minerals (feldspars, muscovite, biotite and schorl) show a distinct transition along the regional zonation. They evolve from sloping fractionated to more flat patterns starting from the biotite up to th
doi_str_mv 10.1016/j.gca.2014.02.006
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1709793889</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0016703714000945</els_id><sourcerecordid>1551039592</sourcerecordid><originalsourceid>FETCH-LOGICAL-a495t-afa7db2f9216873f70dca4f51ca6b1ea3ed67b13c831b740e61d31c4615259373</originalsourceid><addsrcrecordid>eNqFkcFu1DAURSMEEkPhA9h5WRYJdhzHCayqqrRIlRAI1taL85J6aseD7Qwq38kH1TMDLGFjS8_3nvusWxSvGa0YZe3bbTVrqGrKmorWFaXtk2LDOlmXveD8abGhWVRKyuXz4kWMW0qpFIJuil8X9h6sIQ4TWALLSAIEJAgh3RG06HBJBPfersn4hfiJBK_vy8kHZ5aZ5AMD2Eim4B1Jd0iuIa1uAJIpQHY4O0gmYSTnX35kOrx5Rz6vsORZnu-RQIwY4zEls3V4iHmP0qFNGQn6EArHZLMc8QHnw8iSn38esu1vDJmDX3fxZfFsykvhq9_3WfHtw9XXy5vy9tP1x8uL2xKaXqQSJpDjUE99zdpO8knSUUMzCaahHRgCx7GVA-O642yQDcWWjZzppmWiFj2X_Kw4P3F3wX9fMSblTNRoLSzo16iYpL3sedf1_5cKwSjvRV9nKTtJdfAxBpzULhgH4UExqg5lq63KZatD2YrWKpedPe9PHszf3RsMKmqDi8bRBNRJjd78w_0INVK3SA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1551039592</pqid></control><display><type>article</type><title>Alkali metal and rare earth element evolution of rock-forming minerals from the Gatumba area pegmatites (Rwanda): Quantitative assessment of crystal-melt fractionation in the regional zonation of pegmatite groups</title><source>Elsevier ScienceDirect Journals Complete</source><creator>Hulsbosch, Niels ; Hertogen, Jan ; Dewaele, Stijn ; André, Luc ; Muchez, Philippe</creator><creatorcontrib>Hulsbosch, Niels ; Hertogen, Jan ; Dewaele, Stijn ; André, Luc ; Muchez, Philippe</creatorcontrib><description>This study presents a general model for the evaluation of Rayleigh fractional crystallisation as the principal differentiation mechanism in the formation of regionally zoned common and rare-element pegmatites. The magmatic evolution of these systems from a granitic source is reconstructed by means of alkali element and rare earth element (REE) analyses of rock-forming minerals (feldspars, micas and tourmaline), which represent a whole sequence of regional pegmatite zonation. The Gatumba pegmatite field (Rwanda, Central Africa) is chosen as case study area because of its well-developed regional zonation sequence. The pegmatites are spatially and temporally related to peraluminous G4-granites (986±10Ma). The regional zonation is developed around a G4-granite and the proximal pegmatites grade outwardly into biotite, two-mica and muscovite pegmatites. Rare-element (Nb–Ta–Sn) pegmatites occur most distal from the granite. Alkali metal fractionation trends in pegmatitic K-feldspar (Rb 350–6000ppm, Cs 2–160ppm) and muscovite (Rb 670–7000ppm, Cs 10–150ppm) define a single and continuous trend, which is modelled by Rayleigh fractional crystallisation, starting from a parental granite composition (G4-composition: K 3.1wt%, Rb 222ppm, Cs 11ppm). The fractionation model shows, moreover, that the pegmatites adjacent to the parental pluton are the least fractionated, and the distal pegmatites are the most fractionated. Biotite pegmatites form from 0% to 69% crystallisation, two-mica pegmatites from 69% to 92%, and muscovite pegmatites from 92% crystallisation onwards. The extreme Rb- and Cs-enrichment in rare-element pegmatites requires at least 98% fractionation of the initial G4-granite composition. Mathematical derivation of the K/Rb versus Cs relationship in K-feldspars confirms Rayleigh fractional crystallisation as the main differentiation process in the development of regional pegmatite zonation. Moreover (1) it demonstrates the continuity of the fractionation process from biotite pegmatites to rare-element pegmatite and indicates a genetic link among them; and (2) it allows a general evaluation of pegmatite fields in terms of system parameters, i.e. the initial element concentration in the granitic melt and partition coefficients. REE patterns of the rock-forming minerals (feldspars, muscovite, biotite and schorl) show a distinct transition along the regional zonation. They evolve from sloping fractionated to more flat patterns starting from the biotite up to the muscovite pegmatites. Minerals from the rare-element pegmatites (feldspars, muscovite and elbaite) show again more fractionated, heavy REE-depleted patterns. The observed evolution in the REE patterns corresponds to early crystallisation of light REE-enriched monazite and a late crystallisation of mainly cogenetic heavy REE-enriched phases such as apatite, columbite-group minerals and beryl. Modelling of Rayleigh fractionation, starting from an initial parental granite (G4-composition: LaN/YbN 10 and ∑REE 83), shows that this evolution in mineral REE pattern is the result of fractional crystallisation of the pegmatitic melt and precipitation of REE-incorporating minerals such as monazite and apatite. Consequently, trace element modelling indicates that Rayleigh fractional crystallisation governs the mineralogical and geochemical evolution from a granite source to common and eventually rare-element pegmatites. This mechanism shows that granitic pegmatites are extremely fractionated, residual melts which are genetically and directly connected to a main granite body.</description><identifier>ISSN: 0016-7037</identifier><identifier>EISSN: 1872-9533</identifier><identifier>DOI: 10.1016/j.gca.2014.02.006</identifier><language>eng</language><publisher>Elsevier Ltd</publisher><subject>Crystallization ; Fractionation ; Mathematical models ; Mica ; Minerals ; Muscovite ; Pegmatite ; Regional</subject><ispartof>Geochimica et cosmochimica acta, 2014-05, Vol.132, p.349-374</ispartof><rights>2014 Elsevier Ltd</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a495t-afa7db2f9216873f70dca4f51ca6b1ea3ed67b13c831b740e61d31c4615259373</citedby><cites>FETCH-LOGICAL-a495t-afa7db2f9216873f70dca4f51ca6b1ea3ed67b13c831b740e61d31c4615259373</cites><orcidid>0000-0003-0735-3215</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0016703714000945$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3536,27903,27904,65309</link.rule.ids></links><search><creatorcontrib>Hulsbosch, Niels</creatorcontrib><creatorcontrib>Hertogen, Jan</creatorcontrib><creatorcontrib>Dewaele, Stijn</creatorcontrib><creatorcontrib>André, Luc</creatorcontrib><creatorcontrib>Muchez, Philippe</creatorcontrib><title>Alkali metal and rare earth element evolution of rock-forming minerals from the Gatumba area pegmatites (Rwanda): Quantitative assessment of crystal-melt fractionation in the regional zonation of pegmatite groups</title><title>Geochimica et cosmochimica acta</title><description>This study presents a general model for the evaluation of Rayleigh fractional crystallisation as the principal differentiation mechanism in the formation of regionally zoned common and rare-element pegmatites. The magmatic evolution of these systems from a granitic source is reconstructed by means of alkali element and rare earth element (REE) analyses of rock-forming minerals (feldspars, micas and tourmaline), which represent a whole sequence of regional pegmatite zonation. The Gatumba pegmatite field (Rwanda, Central Africa) is chosen as case study area because of its well-developed regional zonation sequence. The pegmatites are spatially and temporally related to peraluminous G4-granites (986±10Ma). The regional zonation is developed around a G4-granite and the proximal pegmatites grade outwardly into biotite, two-mica and muscovite pegmatites. Rare-element (Nb–Ta–Sn) pegmatites occur most distal from the granite. Alkali metal fractionation trends in pegmatitic K-feldspar (Rb 350–6000ppm, Cs 2–160ppm) and muscovite (Rb 670–7000ppm, Cs 10–150ppm) define a single and continuous trend, which is modelled by Rayleigh fractional crystallisation, starting from a parental granite composition (G4-composition: K 3.1wt%, Rb 222ppm, Cs 11ppm). The fractionation model shows, moreover, that the pegmatites adjacent to the parental pluton are the least fractionated, and the distal pegmatites are the most fractionated. Biotite pegmatites form from 0% to 69% crystallisation, two-mica pegmatites from 69% to 92%, and muscovite pegmatites from 92% crystallisation onwards. The extreme Rb- and Cs-enrichment in rare-element pegmatites requires at least 98% fractionation of the initial G4-granite composition. Mathematical derivation of the K/Rb versus Cs relationship in K-feldspars confirms Rayleigh fractional crystallisation as the main differentiation process in the development of regional pegmatite zonation. Moreover (1) it demonstrates the continuity of the fractionation process from biotite pegmatites to rare-element pegmatite and indicates a genetic link among them; and (2) it allows a general evaluation of pegmatite fields in terms of system parameters, i.e. the initial element concentration in the granitic melt and partition coefficients. REE patterns of the rock-forming minerals (feldspars, muscovite, biotite and schorl) show a distinct transition along the regional zonation. They evolve from sloping fractionated to more flat patterns starting from the biotite up to the muscovite pegmatites. Minerals from the rare-element pegmatites (feldspars, muscovite and elbaite) show again more fractionated, heavy REE-depleted patterns. The observed evolution in the REE patterns corresponds to early crystallisation of light REE-enriched monazite and a late crystallisation of mainly cogenetic heavy REE-enriched phases such as apatite, columbite-group minerals and beryl. Modelling of Rayleigh fractionation, starting from an initial parental granite (G4-composition: LaN/YbN 10 and ∑REE 83), shows that this evolution in mineral REE pattern is the result of fractional crystallisation of the pegmatitic melt and precipitation of REE-incorporating minerals such as monazite and apatite. Consequently, trace element modelling indicates that Rayleigh fractional crystallisation governs the mineralogical and geochemical evolution from a granite source to common and eventually rare-element pegmatites. This mechanism shows that granitic pegmatites are extremely fractionated, residual melts which are genetically and directly connected to a main granite body.</description><subject>Crystallization</subject><subject>Fractionation</subject><subject>Mathematical models</subject><subject>Mica</subject><subject>Minerals</subject><subject>Muscovite</subject><subject>Pegmatite</subject><subject>Regional</subject><issn>0016-7037</issn><issn>1872-9533</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><recordid>eNqFkcFu1DAURSMEEkPhA9h5WRYJdhzHCayqqrRIlRAI1taL85J6aseD7Qwq38kH1TMDLGFjS8_3nvusWxSvGa0YZe3bbTVrqGrKmorWFaXtk2LDOlmXveD8abGhWVRKyuXz4kWMW0qpFIJuil8X9h6sIQ4TWALLSAIEJAgh3RG06HBJBPfersn4hfiJBK_vy8kHZ5aZ5AMD2Eim4B1Jd0iuIa1uAJIpQHY4O0gmYSTnX35kOrx5Rz6vsORZnu-RQIwY4zEls3V4iHmP0qFNGQn6EArHZLMc8QHnw8iSn38esu1vDJmDX3fxZfFsykvhq9_3WfHtw9XXy5vy9tP1x8uL2xKaXqQSJpDjUE99zdpO8knSUUMzCaahHRgCx7GVA-O642yQDcWWjZzppmWiFj2X_Kw4P3F3wX9fMSblTNRoLSzo16iYpL3sedf1_5cKwSjvRV9nKTtJdfAxBpzULhgH4UExqg5lq63KZatD2YrWKpedPe9PHszf3RsMKmqDi8bRBNRJjd78w_0INVK3SA</recordid><startdate>20140501</startdate><enddate>20140501</enddate><creator>Hulsbosch, Niels</creator><creator>Hertogen, Jan</creator><creator>Dewaele, Stijn</creator><creator>André, Luc</creator><creator>Muchez, Philippe</creator><general>Elsevier Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0003-0735-3215</orcidid></search><sort><creationdate>20140501</creationdate><title>Alkali metal and rare earth element evolution of rock-forming minerals from the Gatumba area pegmatites (Rwanda): Quantitative assessment of crystal-melt fractionation in the regional zonation of pegmatite groups</title><author>Hulsbosch, Niels ; Hertogen, Jan ; Dewaele, Stijn ; André, Luc ; Muchez, Philippe</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a495t-afa7db2f9216873f70dca4f51ca6b1ea3ed67b13c831b740e61d31c4615259373</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Crystallization</topic><topic>Fractionation</topic><topic>Mathematical models</topic><topic>Mica</topic><topic>Minerals</topic><topic>Muscovite</topic><topic>Pegmatite</topic><topic>Regional</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hulsbosch, Niels</creatorcontrib><creatorcontrib>Hertogen, Jan</creatorcontrib><creatorcontrib>Dewaele, Stijn</creatorcontrib><creatorcontrib>André, Luc</creatorcontrib><creatorcontrib>Muchez, Philippe</creatorcontrib><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Geochimica et cosmochimica acta</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hulsbosch, Niels</au><au>Hertogen, Jan</au><au>Dewaele, Stijn</au><au>André, Luc</au><au>Muchez, Philippe</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Alkali metal and rare earth element evolution of rock-forming minerals from the Gatumba area pegmatites (Rwanda): Quantitative assessment of crystal-melt fractionation in the regional zonation of pegmatite groups</atitle><jtitle>Geochimica et cosmochimica acta</jtitle><date>2014-05-01</date><risdate>2014</risdate><volume>132</volume><spage>349</spage><epage>374</epage><pages>349-374</pages><issn>0016-7037</issn><eissn>1872-9533</eissn><abstract>This study presents a general model for the evaluation of Rayleigh fractional crystallisation as the principal differentiation mechanism in the formation of regionally zoned common and rare-element pegmatites. The magmatic evolution of these systems from a granitic source is reconstructed by means of alkali element and rare earth element (REE) analyses of rock-forming minerals (feldspars, micas and tourmaline), which represent a whole sequence of regional pegmatite zonation. The Gatumba pegmatite field (Rwanda, Central Africa) is chosen as case study area because of its well-developed regional zonation sequence. The pegmatites are spatially and temporally related to peraluminous G4-granites (986±10Ma). The regional zonation is developed around a G4-granite and the proximal pegmatites grade outwardly into biotite, two-mica and muscovite pegmatites. Rare-element (Nb–Ta–Sn) pegmatites occur most distal from the granite. Alkali metal fractionation trends in pegmatitic K-feldspar (Rb 350–6000ppm, Cs 2–160ppm) and muscovite (Rb 670–7000ppm, Cs 10–150ppm) define a single and continuous trend, which is modelled by Rayleigh fractional crystallisation, starting from a parental granite composition (G4-composition: K 3.1wt%, Rb 222ppm, Cs 11ppm). The fractionation model shows, moreover, that the pegmatites adjacent to the parental pluton are the least fractionated, and the distal pegmatites are the most fractionated. Biotite pegmatites form from 0% to 69% crystallisation, two-mica pegmatites from 69% to 92%, and muscovite pegmatites from 92% crystallisation onwards. The extreme Rb- and Cs-enrichment in rare-element pegmatites requires at least 98% fractionation of the initial G4-granite composition. Mathematical derivation of the K/Rb versus Cs relationship in K-feldspars confirms Rayleigh fractional crystallisation as the main differentiation process in the development of regional pegmatite zonation. Moreover (1) it demonstrates the continuity of the fractionation process from biotite pegmatites to rare-element pegmatite and indicates a genetic link among them; and (2) it allows a general evaluation of pegmatite fields in terms of system parameters, i.e. the initial element concentration in the granitic melt and partition coefficients. REE patterns of the rock-forming minerals (feldspars, muscovite, biotite and schorl) show a distinct transition along the regional zonation. They evolve from sloping fractionated to more flat patterns starting from the biotite up to the muscovite pegmatites. Minerals from the rare-element pegmatites (feldspars, muscovite and elbaite) show again more fractionated, heavy REE-depleted patterns. The observed evolution in the REE patterns corresponds to early crystallisation of light REE-enriched monazite and a late crystallisation of mainly cogenetic heavy REE-enriched phases such as apatite, columbite-group minerals and beryl. Modelling of Rayleigh fractionation, starting from an initial parental granite (G4-composition: LaN/YbN 10 and ∑REE 83), shows that this evolution in mineral REE pattern is the result of fractional crystallisation of the pegmatitic melt and precipitation of REE-incorporating minerals such as monazite and apatite. Consequently, trace element modelling indicates that Rayleigh fractional crystallisation governs the mineralogical and geochemical evolution from a granite source to common and eventually rare-element pegmatites. This mechanism shows that granitic pegmatites are extremely fractionated, residual melts which are genetically and directly connected to a main granite body.</abstract><pub>Elsevier Ltd</pub><doi>10.1016/j.gca.2014.02.006</doi><tpages>26</tpages><orcidid>https://orcid.org/0000-0003-0735-3215</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0016-7037
ispartof Geochimica et cosmochimica acta, 2014-05, Vol.132, p.349-374
issn 0016-7037
1872-9533
language eng
recordid cdi_proquest_miscellaneous_1709793889
source Elsevier ScienceDirect Journals Complete
subjects Crystallization
Fractionation
Mathematical models
Mica
Minerals
Muscovite
Pegmatite
Regional
title Alkali metal and rare earth element evolution of rock-forming minerals from the Gatumba area pegmatites (Rwanda): Quantitative assessment of crystal-melt fractionation in the regional zonation of pegmatite groups
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-24T22%3A03%3A18IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Alkali%20metal%20and%20rare%20earth%20element%20evolution%20of%20rock-forming%20minerals%20from%20the%20Gatumba%20area%20pegmatites%20(Rwanda):%20Quantitative%20assessment%20of%20crystal-melt%20fractionation%20in%20the%20regional%20zonation%20of%20pegmatite%20groups&rft.jtitle=Geochimica%20et%20cosmochimica%20acta&rft.au=Hulsbosch,%20Niels&rft.date=2014-05-01&rft.volume=132&rft.spage=349&rft.epage=374&rft.pages=349-374&rft.issn=0016-7037&rft.eissn=1872-9533&rft_id=info:doi/10.1016/j.gca.2014.02.006&rft_dat=%3Cproquest_cross%3E1551039592%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1551039592&rft_id=info:pmid/&rft_els_id=S0016703714000945&rfr_iscdi=true