Pressure effects in nonporous membranes

The solution-diffusion theory for membranes is used as a basis for the formulation and consideration of three models which can describe the mass transfer of solvents through nonporous polymer membranes. Two types of solvent mass transfer processes are considered: the transport of solvent through a m...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Chemical engineering science 2013-12, Vol.104, p.473-483
Hauptverfasser: Vrentas, J.S., Vrentas, C.M.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 483
container_issue
container_start_page 473
container_title Chemical engineering science
container_volume 104
creator Vrentas, J.S.
Vrentas, C.M.
description The solution-diffusion theory for membranes is used as a basis for the formulation and consideration of three models which can describe the mass transfer of solvents through nonporous polymer membranes. Two types of solvent mass transfer processes are considered: the transport of solvent through a membrane immersed in a pure solvent and the osmotic mass transfer of solvent in a solvent–solute-semipermeable membrane system. For the first mass transfer process, the most general of these three mass transfer models (Model III) includes both thermodynamic effects at the solvent–membrane interfaces and pressure diffusion effects inside the membrane. Model I includes only pressure diffusion effects, and Model II includes only thermodynamic effects at the solvent–membrane interfaces. For each model, equations are derived for the solvent mass flux through the membrane and for the mass fraction distribution of solvent inside the membrane. The predictions of each of the models are compared with available mass transfer data for solvent–polymer membrane systems. A similar analysis is used to describe osmotic effects and reverse osmosis. It is concluded that Model III should be the preferred choice for analyzing mass transfer processes for solvents in nonporous polymer membranes. •Three models considered for solution-diffusion theory for nonporous membranes.•Solvent mass flux expressions derived for solvent–polymer membrane systems.•Solvent flux equations can describe reverse osmosis and negative reverse osmosis.•Solvent flow driven by pressure diffusion.•Solvent flow driven by thermodynamic effects.
doi_str_mv 10.1016/j.ces.2013.09.029
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1709791788</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0009250913006489</els_id><sourcerecordid>1513475242</sourcerecordid><originalsourceid>FETCH-LOGICAL-c376t-7cbef020620c691c8da9a4312a65cceda319ef2c9da8f37e32442c77d764b04f3</originalsourceid><addsrcrecordid>eNqFkE1LAzEQhoMoWKs_wJN708uuk4_dbPAk4hcUFLTnkGYnktLu1kwr-O9NWc96Ggae92XmYeycQ8WBN9fLyiNVAriswFQgzAGb8FbLUimoD9kEAEwpajDH7IRomVetOUzY5WtCol3CAkNAv6Ui9kU_9JshDTsq1rheJNcjnbKj4FaEZ79zyuYP9-93T-Xs5fH57nZWeqmbban9AgMIaAT4xnDfds44JblwTe09dk5yg0F407k2SI1SKCW81p1u1AJUkFN2NfZu0vC5Q9radSSPq1U-Ih9kuQajDddt-z9ac6l0LZTIKB9RnwaihMFuUly79G052L0_u7TZn937s2Bs9pczF2MmuMG6jxTJzt8yUGd3EkTDM3EzEpiFfEVMlnzEPr8ZU1ZpuyH-0f8DK7-AFQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1513475242</pqid></control><display><type>article</type><title>Pressure effects in nonporous membranes</title><source>Elsevier ScienceDirect Journals Complete</source><creator>Vrentas, J.S. ; Vrentas, C.M.</creator><creatorcontrib>Vrentas, J.S. ; Vrentas, C.M.</creatorcontrib><description>The solution-diffusion theory for membranes is used as a basis for the formulation and consideration of three models which can describe the mass transfer of solvents through nonporous polymer membranes. Two types of solvent mass transfer processes are considered: the transport of solvent through a membrane immersed in a pure solvent and the osmotic mass transfer of solvent in a solvent–solute-semipermeable membrane system. For the first mass transfer process, the most general of these three mass transfer models (Model III) includes both thermodynamic effects at the solvent–membrane interfaces and pressure diffusion effects inside the membrane. Model I includes only pressure diffusion effects, and Model II includes only thermodynamic effects at the solvent–membrane interfaces. For each model, equations are derived for the solvent mass flux through the membrane and for the mass fraction distribution of solvent inside the membrane. The predictions of each of the models are compared with available mass transfer data for solvent–polymer membrane systems. A similar analysis is used to describe osmotic effects and reverse osmosis. It is concluded that Model III should be the preferred choice for analyzing mass transfer processes for solvents in nonporous polymer membranes. •Three models considered for solution-diffusion theory for nonporous membranes.•Solvent mass flux expressions derived for solvent–polymer membrane systems.•Solvent flux equations can describe reverse osmosis and negative reverse osmosis.•Solvent flow driven by pressure diffusion.•Solvent flow driven by thermodynamic effects.</description><identifier>ISSN: 0009-2509</identifier><identifier>EISSN: 1873-4405</identifier><identifier>DOI: 10.1016/j.ces.2013.09.029</identifier><language>eng</language><publisher>Elsevier Ltd</publisher><subject>Chemical engineering ; Diffusion ; Diffusion effects ; equations ; Jump balances ; Mass transfer ; Mathematical modeling ; Mathematical models ; Membranes ; polymers ; prediction ; Reverse osmosis ; Solvents ; Thermodynamics</subject><ispartof>Chemical engineering science, 2013-12, Vol.104, p.473-483</ispartof><rights>2013 Elsevier Ltd</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c376t-7cbef020620c691c8da9a4312a65cceda319ef2c9da8f37e32442c77d764b04f3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.ces.2013.09.029$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids></links><search><creatorcontrib>Vrentas, J.S.</creatorcontrib><creatorcontrib>Vrentas, C.M.</creatorcontrib><title>Pressure effects in nonporous membranes</title><title>Chemical engineering science</title><description>The solution-diffusion theory for membranes is used as a basis for the formulation and consideration of three models which can describe the mass transfer of solvents through nonporous polymer membranes. Two types of solvent mass transfer processes are considered: the transport of solvent through a membrane immersed in a pure solvent and the osmotic mass transfer of solvent in a solvent–solute-semipermeable membrane system. For the first mass transfer process, the most general of these three mass transfer models (Model III) includes both thermodynamic effects at the solvent–membrane interfaces and pressure diffusion effects inside the membrane. Model I includes only pressure diffusion effects, and Model II includes only thermodynamic effects at the solvent–membrane interfaces. For each model, equations are derived for the solvent mass flux through the membrane and for the mass fraction distribution of solvent inside the membrane. The predictions of each of the models are compared with available mass transfer data for solvent–polymer membrane systems. A similar analysis is used to describe osmotic effects and reverse osmosis. It is concluded that Model III should be the preferred choice for analyzing mass transfer processes for solvents in nonporous polymer membranes. •Three models considered for solution-diffusion theory for nonporous membranes.•Solvent mass flux expressions derived for solvent–polymer membrane systems.•Solvent flux equations can describe reverse osmosis and negative reverse osmosis.•Solvent flow driven by pressure diffusion.•Solvent flow driven by thermodynamic effects.</description><subject>Chemical engineering</subject><subject>Diffusion</subject><subject>Diffusion effects</subject><subject>equations</subject><subject>Jump balances</subject><subject>Mass transfer</subject><subject>Mathematical modeling</subject><subject>Mathematical models</subject><subject>Membranes</subject><subject>polymers</subject><subject>prediction</subject><subject>Reverse osmosis</subject><subject>Solvents</subject><subject>Thermodynamics</subject><issn>0009-2509</issn><issn>1873-4405</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><recordid>eNqFkE1LAzEQhoMoWKs_wJN708uuk4_dbPAk4hcUFLTnkGYnktLu1kwr-O9NWc96Ggae92XmYeycQ8WBN9fLyiNVAriswFQgzAGb8FbLUimoD9kEAEwpajDH7IRomVetOUzY5WtCol3CAkNAv6Ui9kU_9JshDTsq1rheJNcjnbKj4FaEZ79zyuYP9-93T-Xs5fH57nZWeqmbban9AgMIaAT4xnDfds44JblwTe09dk5yg0F407k2SI1SKCW81p1u1AJUkFN2NfZu0vC5Q9radSSPq1U-Ih9kuQajDddt-z9ac6l0LZTIKB9RnwaihMFuUly79G052L0_u7TZn937s2Bs9pczF2MmuMG6jxTJzt8yUGd3EkTDM3EzEpiFfEVMlnzEPr8ZU1ZpuyH-0f8DK7-AFQ</recordid><startdate>20131218</startdate><enddate>20131218</enddate><creator>Vrentas, J.S.</creator><creator>Vrentas, C.M.</creator><general>Elsevier Ltd</general><scope>FBQ</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7U5</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>L7M</scope></search><sort><creationdate>20131218</creationdate><title>Pressure effects in nonporous membranes</title><author>Vrentas, J.S. ; Vrentas, C.M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c376t-7cbef020620c691c8da9a4312a65cceda319ef2c9da8f37e32442c77d764b04f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Chemical engineering</topic><topic>Diffusion</topic><topic>Diffusion effects</topic><topic>equations</topic><topic>Jump balances</topic><topic>Mass transfer</topic><topic>Mathematical modeling</topic><topic>Mathematical models</topic><topic>Membranes</topic><topic>polymers</topic><topic>prediction</topic><topic>Reverse osmosis</topic><topic>Solvents</topic><topic>Thermodynamics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Vrentas, J.S.</creatorcontrib><creatorcontrib>Vrentas, C.M.</creatorcontrib><collection>AGRIS</collection><collection>CrossRef</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Chemical engineering science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Vrentas, J.S.</au><au>Vrentas, C.M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Pressure effects in nonporous membranes</atitle><jtitle>Chemical engineering science</jtitle><date>2013-12-18</date><risdate>2013</risdate><volume>104</volume><spage>473</spage><epage>483</epage><pages>473-483</pages><issn>0009-2509</issn><eissn>1873-4405</eissn><abstract>The solution-diffusion theory for membranes is used as a basis for the formulation and consideration of three models which can describe the mass transfer of solvents through nonporous polymer membranes. Two types of solvent mass transfer processes are considered: the transport of solvent through a membrane immersed in a pure solvent and the osmotic mass transfer of solvent in a solvent–solute-semipermeable membrane system. For the first mass transfer process, the most general of these three mass transfer models (Model III) includes both thermodynamic effects at the solvent–membrane interfaces and pressure diffusion effects inside the membrane. Model I includes only pressure diffusion effects, and Model II includes only thermodynamic effects at the solvent–membrane interfaces. For each model, equations are derived for the solvent mass flux through the membrane and for the mass fraction distribution of solvent inside the membrane. The predictions of each of the models are compared with available mass transfer data for solvent–polymer membrane systems. A similar analysis is used to describe osmotic effects and reverse osmosis. It is concluded that Model III should be the preferred choice for analyzing mass transfer processes for solvents in nonporous polymer membranes. •Three models considered for solution-diffusion theory for nonporous membranes.•Solvent mass flux expressions derived for solvent–polymer membrane systems.•Solvent flux equations can describe reverse osmosis and negative reverse osmosis.•Solvent flow driven by pressure diffusion.•Solvent flow driven by thermodynamic effects.</abstract><pub>Elsevier Ltd</pub><doi>10.1016/j.ces.2013.09.029</doi><tpages>11</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0009-2509
ispartof Chemical engineering science, 2013-12, Vol.104, p.473-483
issn 0009-2509
1873-4405
language eng
recordid cdi_proquest_miscellaneous_1709791788
source Elsevier ScienceDirect Journals Complete
subjects Chemical engineering
Diffusion
Diffusion effects
equations
Jump balances
Mass transfer
Mathematical modeling
Mathematical models
Membranes
polymers
prediction
Reverse osmosis
Solvents
Thermodynamics
title Pressure effects in nonporous membranes
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T21%3A26%3A27IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Pressure%20effects%20in%20nonporous%20membranes&rft.jtitle=Chemical%20engineering%20science&rft.au=Vrentas,%20J.S.&rft.date=2013-12-18&rft.volume=104&rft.spage=473&rft.epage=483&rft.pages=473-483&rft.issn=0009-2509&rft.eissn=1873-4405&rft_id=info:doi/10.1016/j.ces.2013.09.029&rft_dat=%3Cproquest_cross%3E1513475242%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1513475242&rft_id=info:pmid/&rft_els_id=S0009250913006489&rfr_iscdi=true