Integrated airfoil and blade design method for large wind turbines
This paper presents an integrated method for designing airfoil families of large wind turbine blades. For a given rotor diameter and a tip speed ratio, optimal airfoils are designed based on the local speed ratios. To achieve a high power performance at low cost, the airfoils are designed with the o...
Gespeichert in:
Veröffentlicht in: | Renewable energy 2014-10, Vol.70, p.172-183 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 183 |
---|---|
container_issue | |
container_start_page | 172 |
container_title | Renewable energy |
container_volume | 70 |
creator | Zhu, Wei Jun Shen, Wen Zhong Sørensen, Jens Nørkær |
description | This paper presents an integrated method for designing airfoil families of large wind turbine blades. For a given rotor diameter and a tip speed ratio, optimal airfoils are designed based on the local speed ratios. To achieve a high power performance at low cost, the airfoils are designed with the objectives of high Cp and small chord length. When the airfoils are obtained, the optimum flow angle and rotor solidity are calculated which forms the basic input to the blade design. The new airfoils are designed based on a previous in-house designed airfoil family which was optimized at a Reynolds number of 3 million. A novel shape perturbation function is introduced to optimize the geometry based on the existing airfoils which simplifies the design procedure. The viscous/inviscid interactive code XFOIL is used as the aerodynamic tool for airfoil optimization at a Reynolds number of 16 million and a free-stream Mach number of 0.25 near the tip. Results show that the new airfoils achieve a high power coefficient in a wide range of angles of attack (AOA) and are extremely insensitive to surface roughness. Finally, a full blade analysis using computational fluid dynamics (CFD) and blade element momentum (BEM) technique proves the reliability of the integrated design method. |
doi_str_mv | 10.1016/j.renene.2014.02.057 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1709785554</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0960148114001827</els_id><sourcerecordid>1544003474</sourcerecordid><originalsourceid>FETCH-LOGICAL-c448t-91458f25e215476314fcca36774132331d4067c7047fcfcfa651eb2778fb72253</originalsourceid><addsrcrecordid>eNqFkD1PwzAURS0EEqXwDxiyILEkvOfYsbMgAeKjUiUWmC3XeS6u0qTYKYh_T6oiRtAd3nLuu9Jh7ByhQMDqalVE6sYUHFAUwAuQ6oBNUKs6h0rzQzaBuoIchcZjdpLSCgClVmLCbmfdQMtoB2oyG6LvQ5vZrskWrW0oayiFZZetaXjrm8z3MWttXFL2GUZk2MZF6CidsiNv20RnP3fKXh_uX-6e8vnz4-zuZp47IfSQ1yik9lwSRylUVaLwztmyUkpgycsSGwGVcgqE8m6MrSTSgiul_UJxLsspu9z_3cT-fUtpMOuQHLWt7ajfJoMKaqWllOJ_VAoBUAq1Q8UedbFPKZI3mxjWNn4ZBLOza1Zmb9fs7BrgZrQ71i5-FmxytvXRdi6k3y7XspaAO-56z9Fo5iNQNMkF6hw1IZIbTNOHv4e-AT3Sj7I</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1544003474</pqid></control><display><type>article</type><title>Integrated airfoil and blade design method for large wind turbines</title><source>Elsevier ScienceDirect Journals Complete</source><creator>Zhu, Wei Jun ; Shen, Wen Zhong ; Sørensen, Jens Nørkær</creator><creatorcontrib>Zhu, Wei Jun ; Shen, Wen Zhong ; Sørensen, Jens Nørkær</creatorcontrib><description>This paper presents an integrated method for designing airfoil families of large wind turbine blades. For a given rotor diameter and a tip speed ratio, optimal airfoils are designed based on the local speed ratios. To achieve a high power performance at low cost, the airfoils are designed with the objectives of high Cp and small chord length. When the airfoils are obtained, the optimum flow angle and rotor solidity are calculated which forms the basic input to the blade design. The new airfoils are designed based on a previous in-house designed airfoil family which was optimized at a Reynolds number of 3 million. A novel shape perturbation function is introduced to optimize the geometry based on the existing airfoils which simplifies the design procedure. The viscous/inviscid interactive code XFOIL is used as the aerodynamic tool for airfoil optimization at a Reynolds number of 16 million and a free-stream Mach number of 0.25 near the tip. Results show that the new airfoils achieve a high power coefficient in a wide range of angles of attack (AOA) and are extremely insensitive to surface roughness. Finally, a full blade analysis using computational fluid dynamics (CFD) and blade element momentum (BEM) technique proves the reliability of the integrated design method.</description><identifier>ISSN: 0960-1481</identifier><identifier>EISSN: 1879-0682</identifier><identifier>DOI: 10.1016/j.renene.2014.02.057</identifier><language>eng</language><publisher>Oxford: Elsevier Ltd</publisher><subject>Aerodynamics ; Airfoil and blade design ; Airfoils ; Applied sciences ; Blades ; Computational fluid dynamics ; Design engineering ; Energy ; Exact sciences and technology ; Integrated design method ; Mathematical analysis ; Natural energy ; Optimization ; Rotor aerodynamics ; Wind energy ; Wind turbines</subject><ispartof>Renewable energy, 2014-10, Vol.70, p.172-183</ispartof><rights>2014 Elsevier Ltd</rights><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c448t-91458f25e215476314fcca36774132331d4067c7047fcfcfa651eb2778fb72253</citedby><cites>FETCH-LOGICAL-c448t-91458f25e215476314fcca36774132331d4067c7047fcfcfa651eb2778fb72253</cites><orcidid>0000-0002-2238-9497 ; 0000-0001-6233-2367</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0960148114001827$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>309,310,314,776,780,785,786,3537,23909,23910,25118,27901,27902,65534</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=28595017$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Zhu, Wei Jun</creatorcontrib><creatorcontrib>Shen, Wen Zhong</creatorcontrib><creatorcontrib>Sørensen, Jens Nørkær</creatorcontrib><title>Integrated airfoil and blade design method for large wind turbines</title><title>Renewable energy</title><description>This paper presents an integrated method for designing airfoil families of large wind turbine blades. For a given rotor diameter and a tip speed ratio, optimal airfoils are designed based on the local speed ratios. To achieve a high power performance at low cost, the airfoils are designed with the objectives of high Cp and small chord length. When the airfoils are obtained, the optimum flow angle and rotor solidity are calculated which forms the basic input to the blade design. The new airfoils are designed based on a previous in-house designed airfoil family which was optimized at a Reynolds number of 3 million. A novel shape perturbation function is introduced to optimize the geometry based on the existing airfoils which simplifies the design procedure. The viscous/inviscid interactive code XFOIL is used as the aerodynamic tool for airfoil optimization at a Reynolds number of 16 million and a free-stream Mach number of 0.25 near the tip. Results show that the new airfoils achieve a high power coefficient in a wide range of angles of attack (AOA) and are extremely insensitive to surface roughness. Finally, a full blade analysis using computational fluid dynamics (CFD) and blade element momentum (BEM) technique proves the reliability of the integrated design method.</description><subject>Aerodynamics</subject><subject>Airfoil and blade design</subject><subject>Airfoils</subject><subject>Applied sciences</subject><subject>Blades</subject><subject>Computational fluid dynamics</subject><subject>Design engineering</subject><subject>Energy</subject><subject>Exact sciences and technology</subject><subject>Integrated design method</subject><subject>Mathematical analysis</subject><subject>Natural energy</subject><subject>Optimization</subject><subject>Rotor aerodynamics</subject><subject>Wind energy</subject><subject>Wind turbines</subject><issn>0960-1481</issn><issn>1879-0682</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><recordid>eNqFkD1PwzAURS0EEqXwDxiyILEkvOfYsbMgAeKjUiUWmC3XeS6u0qTYKYh_T6oiRtAd3nLuu9Jh7ByhQMDqalVE6sYUHFAUwAuQ6oBNUKs6h0rzQzaBuoIchcZjdpLSCgClVmLCbmfdQMtoB2oyG6LvQ5vZrskWrW0oayiFZZetaXjrm8z3MWttXFL2GUZk2MZF6CidsiNv20RnP3fKXh_uX-6e8vnz4-zuZp47IfSQ1yik9lwSRylUVaLwztmyUkpgycsSGwGVcgqE8m6MrSTSgiul_UJxLsspu9z_3cT-fUtpMOuQHLWt7ajfJoMKaqWllOJ_VAoBUAq1Q8UedbFPKZI3mxjWNn4ZBLOza1Zmb9fs7BrgZrQ71i5-FmxytvXRdi6k3y7XspaAO-56z9Fo5iNQNMkF6hw1IZIbTNOHv4e-AT3Sj7I</recordid><startdate>20141001</startdate><enddate>20141001</enddate><creator>Zhu, Wei Jun</creator><creator>Shen, Wen Zhong</creator><creator>Sørensen, Jens Nørkær</creator><general>Elsevier Ltd</general><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QH</scope><scope>7ST</scope><scope>7U6</scope><scope>7UA</scope><scope>C1K</scope><scope>F1W</scope><scope>H96</scope><scope>L.G</scope><scope>SOI</scope><scope>7SU</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>H8D</scope><scope>KR7</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-2238-9497</orcidid><orcidid>https://orcid.org/0000-0001-6233-2367</orcidid></search><sort><creationdate>20141001</creationdate><title>Integrated airfoil and blade design method for large wind turbines</title><author>Zhu, Wei Jun ; Shen, Wen Zhong ; Sørensen, Jens Nørkær</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c448t-91458f25e215476314fcca36774132331d4067c7047fcfcfa651eb2778fb72253</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Aerodynamics</topic><topic>Airfoil and blade design</topic><topic>Airfoils</topic><topic>Applied sciences</topic><topic>Blades</topic><topic>Computational fluid dynamics</topic><topic>Design engineering</topic><topic>Energy</topic><topic>Exact sciences and technology</topic><topic>Integrated design method</topic><topic>Mathematical analysis</topic><topic>Natural energy</topic><topic>Optimization</topic><topic>Rotor aerodynamics</topic><topic>Wind energy</topic><topic>Wind turbines</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhu, Wei Jun</creatorcontrib><creatorcontrib>Shen, Wen Zhong</creatorcontrib><creatorcontrib>Sørensen, Jens Nørkær</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Aqualine</collection><collection>Environment Abstracts</collection><collection>Sustainability Science Abstracts</collection><collection>Water Resources Abstracts</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>Environment Abstracts</collection><collection>Environmental Engineering Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Renewable energy</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhu, Wei Jun</au><au>Shen, Wen Zhong</au><au>Sørensen, Jens Nørkær</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Integrated airfoil and blade design method for large wind turbines</atitle><jtitle>Renewable energy</jtitle><date>2014-10-01</date><risdate>2014</risdate><volume>70</volume><spage>172</spage><epage>183</epage><pages>172-183</pages><issn>0960-1481</issn><eissn>1879-0682</eissn><abstract>This paper presents an integrated method for designing airfoil families of large wind turbine blades. For a given rotor diameter and a tip speed ratio, optimal airfoils are designed based on the local speed ratios. To achieve a high power performance at low cost, the airfoils are designed with the objectives of high Cp and small chord length. When the airfoils are obtained, the optimum flow angle and rotor solidity are calculated which forms the basic input to the blade design. The new airfoils are designed based on a previous in-house designed airfoil family which was optimized at a Reynolds number of 3 million. A novel shape perturbation function is introduced to optimize the geometry based on the existing airfoils which simplifies the design procedure. The viscous/inviscid interactive code XFOIL is used as the aerodynamic tool for airfoil optimization at a Reynolds number of 16 million and a free-stream Mach number of 0.25 near the tip. Results show that the new airfoils achieve a high power coefficient in a wide range of angles of attack (AOA) and are extremely insensitive to surface roughness. Finally, a full blade analysis using computational fluid dynamics (CFD) and blade element momentum (BEM) technique proves the reliability of the integrated design method.</abstract><cop>Oxford</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.renene.2014.02.057</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0002-2238-9497</orcidid><orcidid>https://orcid.org/0000-0001-6233-2367</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0960-1481 |
ispartof | Renewable energy, 2014-10, Vol.70, p.172-183 |
issn | 0960-1481 1879-0682 |
language | eng |
recordid | cdi_proquest_miscellaneous_1709785554 |
source | Elsevier ScienceDirect Journals Complete |
subjects | Aerodynamics Airfoil and blade design Airfoils Applied sciences Blades Computational fluid dynamics Design engineering Energy Exact sciences and technology Integrated design method Mathematical analysis Natural energy Optimization Rotor aerodynamics Wind energy Wind turbines |
title | Integrated airfoil and blade design method for large wind turbines |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-13T17%3A19%3A33IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Integrated%20airfoil%20and%20blade%20design%20method%20for%20large%20wind%20turbines&rft.jtitle=Renewable%20energy&rft.au=Zhu,%20Wei%20Jun&rft.date=2014-10-01&rft.volume=70&rft.spage=172&rft.epage=183&rft.pages=172-183&rft.issn=0960-1481&rft.eissn=1879-0682&rft_id=info:doi/10.1016/j.renene.2014.02.057&rft_dat=%3Cproquest_cross%3E1544003474%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1544003474&rft_id=info:pmid/&rft_els_id=S0960148114001827&rfr_iscdi=true |