Integrated airfoil and blade design method for large wind turbines

This paper presents an integrated method for designing airfoil families of large wind turbine blades. For a given rotor diameter and a tip speed ratio, optimal airfoils are designed based on the local speed ratios. To achieve a high power performance at low cost, the airfoils are designed with the o...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Renewable energy 2014-10, Vol.70, p.172-183
Hauptverfasser: Zhu, Wei Jun, Shen, Wen Zhong, Sørensen, Jens Nørkær
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 183
container_issue
container_start_page 172
container_title Renewable energy
container_volume 70
creator Zhu, Wei Jun
Shen, Wen Zhong
Sørensen, Jens Nørkær
description This paper presents an integrated method for designing airfoil families of large wind turbine blades. For a given rotor diameter and a tip speed ratio, optimal airfoils are designed based on the local speed ratios. To achieve a high power performance at low cost, the airfoils are designed with the objectives of high Cp and small chord length. When the airfoils are obtained, the optimum flow angle and rotor solidity are calculated which forms the basic input to the blade design. The new airfoils are designed based on a previous in-house designed airfoil family which was optimized at a Reynolds number of 3 million. A novel shape perturbation function is introduced to optimize the geometry based on the existing airfoils which simplifies the design procedure. The viscous/inviscid interactive code XFOIL is used as the aerodynamic tool for airfoil optimization at a Reynolds number of 16 million and a free-stream Mach number of 0.25 near the tip. Results show that the new airfoils achieve a high power coefficient in a wide range of angles of attack (AOA) and are extremely insensitive to surface roughness. Finally, a full blade analysis using computational fluid dynamics (CFD) and blade element momentum (BEM) technique proves the reliability of the integrated design method.
doi_str_mv 10.1016/j.renene.2014.02.057
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1709785554</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0960148114001827</els_id><sourcerecordid>1544003474</sourcerecordid><originalsourceid>FETCH-LOGICAL-c448t-91458f25e215476314fcca36774132331d4067c7047fcfcfa651eb2778fb72253</originalsourceid><addsrcrecordid>eNqFkD1PwzAURS0EEqXwDxiyILEkvOfYsbMgAeKjUiUWmC3XeS6u0qTYKYh_T6oiRtAd3nLuu9Jh7ByhQMDqalVE6sYUHFAUwAuQ6oBNUKs6h0rzQzaBuoIchcZjdpLSCgClVmLCbmfdQMtoB2oyG6LvQ5vZrskWrW0oayiFZZetaXjrm8z3MWttXFL2GUZk2MZF6CidsiNv20RnP3fKXh_uX-6e8vnz4-zuZp47IfSQ1yik9lwSRylUVaLwztmyUkpgycsSGwGVcgqE8m6MrSTSgiul_UJxLsspu9z_3cT-fUtpMOuQHLWt7ajfJoMKaqWllOJ_VAoBUAq1Q8UedbFPKZI3mxjWNn4ZBLOza1Zmb9fs7BrgZrQ71i5-FmxytvXRdi6k3y7XspaAO-56z9Fo5iNQNMkF6hw1IZIbTNOHv4e-AT3Sj7I</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1544003474</pqid></control><display><type>article</type><title>Integrated airfoil and blade design method for large wind turbines</title><source>Elsevier ScienceDirect Journals Complete</source><creator>Zhu, Wei Jun ; Shen, Wen Zhong ; Sørensen, Jens Nørkær</creator><creatorcontrib>Zhu, Wei Jun ; Shen, Wen Zhong ; Sørensen, Jens Nørkær</creatorcontrib><description>This paper presents an integrated method for designing airfoil families of large wind turbine blades. For a given rotor diameter and a tip speed ratio, optimal airfoils are designed based on the local speed ratios. To achieve a high power performance at low cost, the airfoils are designed with the objectives of high Cp and small chord length. When the airfoils are obtained, the optimum flow angle and rotor solidity are calculated which forms the basic input to the blade design. The new airfoils are designed based on a previous in-house designed airfoil family which was optimized at a Reynolds number of 3 million. A novel shape perturbation function is introduced to optimize the geometry based on the existing airfoils which simplifies the design procedure. The viscous/inviscid interactive code XFOIL is used as the aerodynamic tool for airfoil optimization at a Reynolds number of 16 million and a free-stream Mach number of 0.25 near the tip. Results show that the new airfoils achieve a high power coefficient in a wide range of angles of attack (AOA) and are extremely insensitive to surface roughness. Finally, a full blade analysis using computational fluid dynamics (CFD) and blade element momentum (BEM) technique proves the reliability of the integrated design method.</description><identifier>ISSN: 0960-1481</identifier><identifier>EISSN: 1879-0682</identifier><identifier>DOI: 10.1016/j.renene.2014.02.057</identifier><language>eng</language><publisher>Oxford: Elsevier Ltd</publisher><subject>Aerodynamics ; Airfoil and blade design ; Airfoils ; Applied sciences ; Blades ; Computational fluid dynamics ; Design engineering ; Energy ; Exact sciences and technology ; Integrated design method ; Mathematical analysis ; Natural energy ; Optimization ; Rotor aerodynamics ; Wind energy ; Wind turbines</subject><ispartof>Renewable energy, 2014-10, Vol.70, p.172-183</ispartof><rights>2014 Elsevier Ltd</rights><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c448t-91458f25e215476314fcca36774132331d4067c7047fcfcfa651eb2778fb72253</citedby><cites>FETCH-LOGICAL-c448t-91458f25e215476314fcca36774132331d4067c7047fcfcfa651eb2778fb72253</cites><orcidid>0000-0002-2238-9497 ; 0000-0001-6233-2367</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0960148114001827$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>309,310,314,776,780,785,786,3537,23909,23910,25118,27901,27902,65534</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=28595017$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Zhu, Wei Jun</creatorcontrib><creatorcontrib>Shen, Wen Zhong</creatorcontrib><creatorcontrib>Sørensen, Jens Nørkær</creatorcontrib><title>Integrated airfoil and blade design method for large wind turbines</title><title>Renewable energy</title><description>This paper presents an integrated method for designing airfoil families of large wind turbine blades. For a given rotor diameter and a tip speed ratio, optimal airfoils are designed based on the local speed ratios. To achieve a high power performance at low cost, the airfoils are designed with the objectives of high Cp and small chord length. When the airfoils are obtained, the optimum flow angle and rotor solidity are calculated which forms the basic input to the blade design. The new airfoils are designed based on a previous in-house designed airfoil family which was optimized at a Reynolds number of 3 million. A novel shape perturbation function is introduced to optimize the geometry based on the existing airfoils which simplifies the design procedure. The viscous/inviscid interactive code XFOIL is used as the aerodynamic tool for airfoil optimization at a Reynolds number of 16 million and a free-stream Mach number of 0.25 near the tip. Results show that the new airfoils achieve a high power coefficient in a wide range of angles of attack (AOA) and are extremely insensitive to surface roughness. Finally, a full blade analysis using computational fluid dynamics (CFD) and blade element momentum (BEM) technique proves the reliability of the integrated design method.</description><subject>Aerodynamics</subject><subject>Airfoil and blade design</subject><subject>Airfoils</subject><subject>Applied sciences</subject><subject>Blades</subject><subject>Computational fluid dynamics</subject><subject>Design engineering</subject><subject>Energy</subject><subject>Exact sciences and technology</subject><subject>Integrated design method</subject><subject>Mathematical analysis</subject><subject>Natural energy</subject><subject>Optimization</subject><subject>Rotor aerodynamics</subject><subject>Wind energy</subject><subject>Wind turbines</subject><issn>0960-1481</issn><issn>1879-0682</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><recordid>eNqFkD1PwzAURS0EEqXwDxiyILEkvOfYsbMgAeKjUiUWmC3XeS6u0qTYKYh_T6oiRtAd3nLuu9Jh7ByhQMDqalVE6sYUHFAUwAuQ6oBNUKs6h0rzQzaBuoIchcZjdpLSCgClVmLCbmfdQMtoB2oyG6LvQ5vZrskWrW0oayiFZZetaXjrm8z3MWttXFL2GUZk2MZF6CidsiNv20RnP3fKXh_uX-6e8vnz4-zuZp47IfSQ1yik9lwSRylUVaLwztmyUkpgycsSGwGVcgqE8m6MrSTSgiul_UJxLsspu9z_3cT-fUtpMOuQHLWt7ajfJoMKaqWllOJ_VAoBUAq1Q8UedbFPKZI3mxjWNn4ZBLOza1Zmb9fs7BrgZrQ71i5-FmxytvXRdi6k3y7XspaAO-56z9Fo5iNQNMkF6hw1IZIbTNOHv4e-AT3Sj7I</recordid><startdate>20141001</startdate><enddate>20141001</enddate><creator>Zhu, Wei Jun</creator><creator>Shen, Wen Zhong</creator><creator>Sørensen, Jens Nørkær</creator><general>Elsevier Ltd</general><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QH</scope><scope>7ST</scope><scope>7U6</scope><scope>7UA</scope><scope>C1K</scope><scope>F1W</scope><scope>H96</scope><scope>L.G</scope><scope>SOI</scope><scope>7SU</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>H8D</scope><scope>KR7</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-2238-9497</orcidid><orcidid>https://orcid.org/0000-0001-6233-2367</orcidid></search><sort><creationdate>20141001</creationdate><title>Integrated airfoil and blade design method for large wind turbines</title><author>Zhu, Wei Jun ; Shen, Wen Zhong ; Sørensen, Jens Nørkær</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c448t-91458f25e215476314fcca36774132331d4067c7047fcfcfa651eb2778fb72253</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Aerodynamics</topic><topic>Airfoil and blade design</topic><topic>Airfoils</topic><topic>Applied sciences</topic><topic>Blades</topic><topic>Computational fluid dynamics</topic><topic>Design engineering</topic><topic>Energy</topic><topic>Exact sciences and technology</topic><topic>Integrated design method</topic><topic>Mathematical analysis</topic><topic>Natural energy</topic><topic>Optimization</topic><topic>Rotor aerodynamics</topic><topic>Wind energy</topic><topic>Wind turbines</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhu, Wei Jun</creatorcontrib><creatorcontrib>Shen, Wen Zhong</creatorcontrib><creatorcontrib>Sørensen, Jens Nørkær</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Aqualine</collection><collection>Environment Abstracts</collection><collection>Sustainability Science Abstracts</collection><collection>Water Resources Abstracts</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>Environment Abstracts</collection><collection>Environmental Engineering Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Renewable energy</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhu, Wei Jun</au><au>Shen, Wen Zhong</au><au>Sørensen, Jens Nørkær</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Integrated airfoil and blade design method for large wind turbines</atitle><jtitle>Renewable energy</jtitle><date>2014-10-01</date><risdate>2014</risdate><volume>70</volume><spage>172</spage><epage>183</epage><pages>172-183</pages><issn>0960-1481</issn><eissn>1879-0682</eissn><abstract>This paper presents an integrated method for designing airfoil families of large wind turbine blades. For a given rotor diameter and a tip speed ratio, optimal airfoils are designed based on the local speed ratios. To achieve a high power performance at low cost, the airfoils are designed with the objectives of high Cp and small chord length. When the airfoils are obtained, the optimum flow angle and rotor solidity are calculated which forms the basic input to the blade design. The new airfoils are designed based on a previous in-house designed airfoil family which was optimized at a Reynolds number of 3 million. A novel shape perturbation function is introduced to optimize the geometry based on the existing airfoils which simplifies the design procedure. The viscous/inviscid interactive code XFOIL is used as the aerodynamic tool for airfoil optimization at a Reynolds number of 16 million and a free-stream Mach number of 0.25 near the tip. Results show that the new airfoils achieve a high power coefficient in a wide range of angles of attack (AOA) and are extremely insensitive to surface roughness. Finally, a full blade analysis using computational fluid dynamics (CFD) and blade element momentum (BEM) technique proves the reliability of the integrated design method.</abstract><cop>Oxford</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.renene.2014.02.057</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0002-2238-9497</orcidid><orcidid>https://orcid.org/0000-0001-6233-2367</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0960-1481
ispartof Renewable energy, 2014-10, Vol.70, p.172-183
issn 0960-1481
1879-0682
language eng
recordid cdi_proquest_miscellaneous_1709785554
source Elsevier ScienceDirect Journals Complete
subjects Aerodynamics
Airfoil and blade design
Airfoils
Applied sciences
Blades
Computational fluid dynamics
Design engineering
Energy
Exact sciences and technology
Integrated design method
Mathematical analysis
Natural energy
Optimization
Rotor aerodynamics
Wind energy
Wind turbines
title Integrated airfoil and blade design method for large wind turbines
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-13T17%3A19%3A33IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Integrated%20airfoil%20and%20blade%20design%20method%20for%20large%20wind%20turbines&rft.jtitle=Renewable%20energy&rft.au=Zhu,%20Wei%20Jun&rft.date=2014-10-01&rft.volume=70&rft.spage=172&rft.epage=183&rft.pages=172-183&rft.issn=0960-1481&rft.eissn=1879-0682&rft_id=info:doi/10.1016/j.renene.2014.02.057&rft_dat=%3Cproquest_cross%3E1544003474%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1544003474&rft_id=info:pmid/&rft_els_id=S0960148114001827&rfr_iscdi=true