De- and rehydration of Ca(OH)2 in a reactor with direct heat transfer for thermo-chemical heat storage. Part B: Validation of model

► 2D model of the reactor to compare the experimental and simulated results. ► Validation of model. ► Good agreement regarding heat transfer, integral reaction rate and maximum temperatures. ► Good agreement regarding the temperature profiles after adaptation of the reaction rate. Heat storage techn...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Chemical engineering research & design 2013-05, Vol.91 (5), p.865-873
Hauptverfasser: Schaube, F., Utz, I., Wörner, A., Müller-Steinhagen, H.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 873
container_issue 5
container_start_page 865
container_title Chemical engineering research & design
container_volume 91
creator Schaube, F.
Utz, I.
Wörner, A.
Müller-Steinhagen, H.
description ► 2D model of the reactor to compare the experimental and simulated results. ► Validation of model. ► Good agreement regarding heat transfer, integral reaction rate and maximum temperatures. ► Good agreement regarding the temperature profiles after adaptation of the reaction rate. Heat storage technologies are used to improve energy efficiency of power plants and recovery of process heat. Storing thermal energy by reversible thermo-chemical reactions offers a promising option for high storage capacities especially at high temperatures. Due to its low material cost the use of the gas–solid reaction Ca(OH)2⇌CaO+H2O has been suggested. In Part A of this work the thermal behavior of a reactor with direct heat transfer was experimentally investigated. In this part a two-dimensional model is applied for the specified system. The experimental and simulated results during the exothermic hydration are discussed in order to confirm the validity of the model. The model is validated regarding heat transfer, integral reaction rate and maximum temperatures. In addition, an adaptation of the kinetic equation is proposed in order to take into account rate-limiting effects due to agglomeration in the powder bed.
doi_str_mv 10.1016/j.cherd.2013.02.019
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1709781172</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0263876213000828</els_id><sourcerecordid>1709781172</sourcerecordid><originalsourceid>FETCH-LOGICAL-c321t-b5ff89053255f4282dc09c78f707634bc5f139bb0b63c4d5105d330f9b0e4c2f3</originalsourceid><addsrcrecordid>eNqFkUFP3DAQhXNoJSjwC3rxEQ5Jx3YSJ0g90KWwlZCWA3C1HHvMepXEYJtWnPnjGIJ6bE9zmPfN07xXFF8pVBRo-21X6S0GUzGgvAJWAe0_FfvAWl52omV7xZcYdwBARd3tFy_nWBI1GxJw-2yCSs7PxFuyUseb9QkjbiYq75ROPpA_Lm2JcQF1IltUiaSg5mgxEJu3KdtOvszuk9NqXBQxc-oeK3KtQiI_TsmdGp35azN5g-Nh8dmqMeLRxzwobi9-3qzW5dXm8tfq7KrUnNFUDo21XQ8NZ01ja9Yxo6HXorMCRMvrQTeW8n4YYGi5rk1DoTGcg-0HwFozyw-K4-XuQ_CPTxiTnFzUOI5qRv8UJRXQi45Swf4v5SIH2rC6y1K-SHXwMQa08iG4SYVnSUG-NSJ38r0R-daIBCZzI5n6vlCYH_7tMMioHc4al3il8e6f_CsWlJYg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1372635248</pqid></control><display><type>article</type><title>De- and rehydration of Ca(OH)2 in a reactor with direct heat transfer for thermo-chemical heat storage. Part B: Validation of model</title><source>Elsevier ScienceDirect Journals</source><creator>Schaube, F. ; Utz, I. ; Wörner, A. ; Müller-Steinhagen, H.</creator><creatorcontrib>Schaube, F. ; Utz, I. ; Wörner, A. ; Müller-Steinhagen, H.</creatorcontrib><description>► 2D model of the reactor to compare the experimental and simulated results. ► Validation of model. ► Good agreement regarding heat transfer, integral reaction rate and maximum temperatures. ► Good agreement regarding the temperature profiles after adaptation of the reaction rate. Heat storage technologies are used to improve energy efficiency of power plants and recovery of process heat. Storing thermal energy by reversible thermo-chemical reactions offers a promising option for high storage capacities especially at high temperatures. Due to its low material cost the use of the gas–solid reaction Ca(OH)2⇌CaO+H2O has been suggested. In Part A of this work the thermal behavior of a reactor with direct heat transfer was experimentally investigated. In this part a two-dimensional model is applied for the specified system. The experimental and simulated results during the exothermic hydration are discussed in order to confirm the validity of the model. The model is validated regarding heat transfer, integral reaction rate and maximum temperatures. In addition, an adaptation of the kinetic equation is proposed in order to take into account rate-limiting effects due to agglomeration in the powder bed.</description><identifier>ISSN: 0263-8762</identifier><identifier>DOI: 10.1016/j.cherd.2013.02.019</identifier><language>eng</language><publisher>Elsevier B.V</publisher><subject>Agglomeration ; Calcium hydroxide ; Calcium oxide ; CFD ; Computer simulation ; Direct contact ; Electric power generation ; Energy management ; Gas–solid reaction ; Heat storage ; Heat transfer ; Hydration ; Reactors ; Thermo-chemical heat storage</subject><ispartof>Chemical engineering research &amp; design, 2013-05, Vol.91 (5), p.865-873</ispartof><rights>2013 The Institution of Chemical Engineers</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c321t-b5ff89053255f4282dc09c78f707634bc5f139bb0b63c4d5105d330f9b0e4c2f3</citedby><cites>FETCH-LOGICAL-c321t-b5ff89053255f4282dc09c78f707634bc5f139bb0b63c4d5105d330f9b0e4c2f3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0263876213000828$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3536,27903,27904,65309</link.rule.ids></links><search><creatorcontrib>Schaube, F.</creatorcontrib><creatorcontrib>Utz, I.</creatorcontrib><creatorcontrib>Wörner, A.</creatorcontrib><creatorcontrib>Müller-Steinhagen, H.</creatorcontrib><title>De- and rehydration of Ca(OH)2 in a reactor with direct heat transfer for thermo-chemical heat storage. Part B: Validation of model</title><title>Chemical engineering research &amp; design</title><description>► 2D model of the reactor to compare the experimental and simulated results. ► Validation of model. ► Good agreement regarding heat transfer, integral reaction rate and maximum temperatures. ► Good agreement regarding the temperature profiles after adaptation of the reaction rate. Heat storage technologies are used to improve energy efficiency of power plants and recovery of process heat. Storing thermal energy by reversible thermo-chemical reactions offers a promising option for high storage capacities especially at high temperatures. Due to its low material cost the use of the gas–solid reaction Ca(OH)2⇌CaO+H2O has been suggested. In Part A of this work the thermal behavior of a reactor with direct heat transfer was experimentally investigated. In this part a two-dimensional model is applied for the specified system. The experimental and simulated results during the exothermic hydration are discussed in order to confirm the validity of the model. The model is validated regarding heat transfer, integral reaction rate and maximum temperatures. In addition, an adaptation of the kinetic equation is proposed in order to take into account rate-limiting effects due to agglomeration in the powder bed.</description><subject>Agglomeration</subject><subject>Calcium hydroxide</subject><subject>Calcium oxide</subject><subject>CFD</subject><subject>Computer simulation</subject><subject>Direct contact</subject><subject>Electric power generation</subject><subject>Energy management</subject><subject>Gas–solid reaction</subject><subject>Heat storage</subject><subject>Heat transfer</subject><subject>Hydration</subject><subject>Reactors</subject><subject>Thermo-chemical heat storage</subject><issn>0263-8762</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><recordid>eNqFkUFP3DAQhXNoJSjwC3rxEQ5Jx3YSJ0g90KWwlZCWA3C1HHvMepXEYJtWnPnjGIJ6bE9zmPfN07xXFF8pVBRo-21X6S0GUzGgvAJWAe0_FfvAWl52omV7xZcYdwBARd3tFy_nWBI1GxJw-2yCSs7PxFuyUseb9QkjbiYq75ROPpA_Lm2JcQF1IltUiaSg5mgxEJu3KdtOvszuk9NqXBQxc-oeK3KtQiI_TsmdGp35azN5g-Nh8dmqMeLRxzwobi9-3qzW5dXm8tfq7KrUnNFUDo21XQ8NZ01ja9Yxo6HXorMCRMvrQTeW8n4YYGi5rk1DoTGcg-0HwFozyw-K4-XuQ_CPTxiTnFzUOI5qRv8UJRXQi45Swf4v5SIH2rC6y1K-SHXwMQa08iG4SYVnSUG-NSJ38r0R-daIBCZzI5n6vlCYH_7tMMioHc4al3il8e6f_CsWlJYg</recordid><startdate>201305</startdate><enddate>201305</enddate><creator>Schaube, F.</creator><creator>Utz, I.</creator><creator>Wörner, A.</creator><creator>Müller-Steinhagen, H.</creator><general>Elsevier B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SU</scope><scope>7TB</scope><scope>7U5</scope><scope>8FD</scope><scope>C1K</scope><scope>F28</scope><scope>FR3</scope><scope>L7M</scope><scope>7SR</scope><scope>8BQ</scope><scope>JG9</scope></search><sort><creationdate>201305</creationdate><title>De- and rehydration of Ca(OH)2 in a reactor with direct heat transfer for thermo-chemical heat storage. Part B: Validation of model</title><author>Schaube, F. ; Utz, I. ; Wörner, A. ; Müller-Steinhagen, H.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c321t-b5ff89053255f4282dc09c78f707634bc5f139bb0b63c4d5105d330f9b0e4c2f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Agglomeration</topic><topic>Calcium hydroxide</topic><topic>Calcium oxide</topic><topic>CFD</topic><topic>Computer simulation</topic><topic>Direct contact</topic><topic>Electric power generation</topic><topic>Energy management</topic><topic>Gas–solid reaction</topic><topic>Heat storage</topic><topic>Heat transfer</topic><topic>Hydration</topic><topic>Reactors</topic><topic>Thermo-chemical heat storage</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Schaube, F.</creatorcontrib><creatorcontrib>Utz, I.</creatorcontrib><creatorcontrib>Wörner, A.</creatorcontrib><creatorcontrib>Müller-Steinhagen, H.</creatorcontrib><collection>CrossRef</collection><collection>Environmental Engineering Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Materials Research Database</collection><jtitle>Chemical engineering research &amp; design</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Schaube, F.</au><au>Utz, I.</au><au>Wörner, A.</au><au>Müller-Steinhagen, H.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>De- and rehydration of Ca(OH)2 in a reactor with direct heat transfer for thermo-chemical heat storage. Part B: Validation of model</atitle><jtitle>Chemical engineering research &amp; design</jtitle><date>2013-05</date><risdate>2013</risdate><volume>91</volume><issue>5</issue><spage>865</spage><epage>873</epage><pages>865-873</pages><issn>0263-8762</issn><abstract>► 2D model of the reactor to compare the experimental and simulated results. ► Validation of model. ► Good agreement regarding heat transfer, integral reaction rate and maximum temperatures. ► Good agreement regarding the temperature profiles after adaptation of the reaction rate. Heat storage technologies are used to improve energy efficiency of power plants and recovery of process heat. Storing thermal energy by reversible thermo-chemical reactions offers a promising option for high storage capacities especially at high temperatures. Due to its low material cost the use of the gas–solid reaction Ca(OH)2⇌CaO+H2O has been suggested. In Part A of this work the thermal behavior of a reactor with direct heat transfer was experimentally investigated. In this part a two-dimensional model is applied for the specified system. The experimental and simulated results during the exothermic hydration are discussed in order to confirm the validity of the model. The model is validated regarding heat transfer, integral reaction rate and maximum temperatures. In addition, an adaptation of the kinetic equation is proposed in order to take into account rate-limiting effects due to agglomeration in the powder bed.</abstract><pub>Elsevier B.V</pub><doi>10.1016/j.cherd.2013.02.019</doi><tpages>9</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0263-8762
ispartof Chemical engineering research & design, 2013-05, Vol.91 (5), p.865-873
issn 0263-8762
language eng
recordid cdi_proquest_miscellaneous_1709781172
source Elsevier ScienceDirect Journals
subjects Agglomeration
Calcium hydroxide
Calcium oxide
CFD
Computer simulation
Direct contact
Electric power generation
Energy management
Gas–solid reaction
Heat storage
Heat transfer
Hydration
Reactors
Thermo-chemical heat storage
title De- and rehydration of Ca(OH)2 in a reactor with direct heat transfer for thermo-chemical heat storage. Part B: Validation of model
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-25T21%3A28%3A21IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=De-%20and%20rehydration%20of%20Ca(OH)2%20in%20a%20reactor%20with%20direct%20heat%20transfer%20for%20thermo-chemical%20heat%20storage.%20Part%20B:%20Validation%20of%20model&rft.jtitle=Chemical%20engineering%20research%20&%20design&rft.au=Schaube,%20F.&rft.date=2013-05&rft.volume=91&rft.issue=5&rft.spage=865&rft.epage=873&rft.pages=865-873&rft.issn=0263-8762&rft_id=info:doi/10.1016/j.cherd.2013.02.019&rft_dat=%3Cproquest_cross%3E1709781172%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1372635248&rft_id=info:pmid/&rft_els_id=S0263876213000828&rfr_iscdi=true