Energy dissipation in unsteady turbulent pipe flows caused by water hammer
Energy dissipation and turbulent kinetic energy production and its dissipation in unsteady turbulent pipe flows due to water hammer phenomena are numerically studied. For this purpose, the two-dimensional governing equations of water hammer are solved using the method of characteristics. A k–ω turbu...
Gespeichert in:
Veröffentlicht in: | Computers & fluids 2013-03, Vol.73, p.124-133 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 133 |
---|---|
container_issue | |
container_start_page | 124 |
container_title | Computers & fluids |
container_volume | 73 |
creator | Riasi, A. Nourbakhsh, A. Raisee, M. |
description | Energy dissipation and turbulent kinetic energy production and its dissipation in unsteady turbulent pipe flows due to water hammer phenomena are numerically studied. For this purpose, the two-dimensional governing equations of water hammer are solved using the method of characteristics. A k–ω turbulence model which is accurate for two-dimensional boundary layers under adverse and favorable pressure gradients is applied. The numerical results are in good agreement with the experimental data. Through an order of magnitude analysis, two dimensionless parameters have been identified which can be used for the evaluation of viscous and turbulent shear stress terms. The influence of these non-dimensional parameters on pressure oscillations, wall-shear-stress, dissipation rate as well as profiles of velocity, turbulent production and dissipation are investigated. The non-dimensional parameter P, which represents time scale ratio of turbulence diffusion in the radial direction to the pressure wave speed, is used to study the structure and strength of turbulence. It is found that for the case of P≈1, for which the values of the non-dimensional groups are larger, the peaks of turbulence energy production and dissipation move rapidly away from the wall and turbulence structure is significantly changed. For the case of P≫1, for which the values of non-dimensional parameters are smaller, these variations are found to be small. |
doi_str_mv | 10.1016/j.compfluid.2012.12.015 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1709780674</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0045793013000042</els_id><sourcerecordid>1513452226</sourcerecordid><originalsourceid>FETCH-LOGICAL-c447t-644196a8614c0d04fb78ff19633cd49e5d4f397ee25581cd272919ab90ded5b83</originalsourceid><addsrcrecordid>eNqNkUtr5DAQhMWShZ0k-xtWx1w8acmSZR2HkCcDuSRnIUvtXQ1-rWQnzL-Phgm5TqCg6earOnQR8ofBmgGrrndrN_ZT2y3Brzkwvs4CJn-QFauVLkAJdUZWAEIWSpfwi5yntIO8l1ysyNPtgPHvnvqQUpjsHMaBhoEuQ5rR-j2dl9gsHQ4zncKEtO3G90SdXRJ62uzpu50x0n-27zFekp-t7RL-_pwX5PXu9uXmodg-3z_ebLaFE0LNRSUE05WtKyYceBBto-q2zaeydF5olF60pVaIXMqaOc8V10zbRoNHL5u6vCBXx9wpjv8XTLPpQ3LYdXbAcUmGKdCqhkqJ76EKlITTqGSlkJzz6jRaVpIxmZMzqo6oi2NKEVszxdDbuDcMzKE-szNf9ZlDfSYr15edm6MT8yvfAkaTXMDBoQ8R3Wz8GE5mfAAxqaan</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1365115977</pqid></control><display><type>article</type><title>Energy dissipation in unsteady turbulent pipe flows caused by water hammer</title><source>Elsevier ScienceDirect Journals Complete - AutoHoldings</source><creator>Riasi, A. ; Nourbakhsh, A. ; Raisee, M.</creator><creatorcontrib>Riasi, A. ; Nourbakhsh, A. ; Raisee, M.</creatorcontrib><description>Energy dissipation and turbulent kinetic energy production and its dissipation in unsteady turbulent pipe flows due to water hammer phenomena are numerically studied. For this purpose, the two-dimensional governing equations of water hammer are solved using the method of characteristics. A k–ω turbulence model which is accurate for two-dimensional boundary layers under adverse and favorable pressure gradients is applied. The numerical results are in good agreement with the experimental data. Through an order of magnitude analysis, two dimensionless parameters have been identified which can be used for the evaluation of viscous and turbulent shear stress terms. The influence of these non-dimensional parameters on pressure oscillations, wall-shear-stress, dissipation rate as well as profiles of velocity, turbulent production and dissipation are investigated. The non-dimensional parameter P, which represents time scale ratio of turbulence diffusion in the radial direction to the pressure wave speed, is used to study the structure and strength of turbulence. It is found that for the case of P≈1, for which the values of the non-dimensional groups are larger, the peaks of turbulence energy production and dissipation move rapidly away from the wall and turbulence structure is significantly changed. For the case of P≫1, for which the values of non-dimensional parameters are smaller, these variations are found to be small.</description><identifier>ISSN: 0045-7930</identifier><identifier>EISSN: 1879-0747</identifier><identifier>DOI: 10.1016/j.compfluid.2012.12.015</identifier><language>eng</language><publisher>Elsevier Ltd</publisher><subject>Computational fluid dynamics ; Dimensional analysis ; Dissipation ; Energy dissipation ; Fluid flow ; k–ω Turbulence model ; Mathematical models ; Turbulence ; Turbulent flow ; Turbulent production ; Unsteady ; Water hammer</subject><ispartof>Computers & fluids, 2013-03, Vol.73, p.124-133</ispartof><rights>2013 Elsevier Ltd</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c447t-644196a8614c0d04fb78ff19633cd49e5d4f397ee25581cd272919ab90ded5b83</citedby><cites>FETCH-LOGICAL-c447t-644196a8614c0d04fb78ff19633cd49e5d4f397ee25581cd272919ab90ded5b83</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.compfluid.2012.12.015$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3548,27922,27923,45993</link.rule.ids></links><search><creatorcontrib>Riasi, A.</creatorcontrib><creatorcontrib>Nourbakhsh, A.</creatorcontrib><creatorcontrib>Raisee, M.</creatorcontrib><title>Energy dissipation in unsteady turbulent pipe flows caused by water hammer</title><title>Computers & fluids</title><description>Energy dissipation and turbulent kinetic energy production and its dissipation in unsteady turbulent pipe flows due to water hammer phenomena are numerically studied. For this purpose, the two-dimensional governing equations of water hammer are solved using the method of characteristics. A k–ω turbulence model which is accurate for two-dimensional boundary layers under adverse and favorable pressure gradients is applied. The numerical results are in good agreement with the experimental data. Through an order of magnitude analysis, two dimensionless parameters have been identified which can be used for the evaluation of viscous and turbulent shear stress terms. The influence of these non-dimensional parameters on pressure oscillations, wall-shear-stress, dissipation rate as well as profiles of velocity, turbulent production and dissipation are investigated. The non-dimensional parameter P, which represents time scale ratio of turbulence diffusion in the radial direction to the pressure wave speed, is used to study the structure and strength of turbulence. It is found that for the case of P≈1, for which the values of the non-dimensional groups are larger, the peaks of turbulence energy production and dissipation move rapidly away from the wall and turbulence structure is significantly changed. For the case of P≫1, for which the values of non-dimensional parameters are smaller, these variations are found to be small.</description><subject>Computational fluid dynamics</subject><subject>Dimensional analysis</subject><subject>Dissipation</subject><subject>Energy dissipation</subject><subject>Fluid flow</subject><subject>k–ω Turbulence model</subject><subject>Mathematical models</subject><subject>Turbulence</subject><subject>Turbulent flow</subject><subject>Turbulent production</subject><subject>Unsteady</subject><subject>Water hammer</subject><issn>0045-7930</issn><issn>1879-0747</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><recordid>eNqNkUtr5DAQhMWShZ0k-xtWx1w8acmSZR2HkCcDuSRnIUvtXQ1-rWQnzL-Phgm5TqCg6earOnQR8ofBmgGrrndrN_ZT2y3Brzkwvs4CJn-QFauVLkAJdUZWAEIWSpfwi5yntIO8l1ysyNPtgPHvnvqQUpjsHMaBhoEuQ5rR-j2dl9gsHQ4zncKEtO3G90SdXRJ62uzpu50x0n-27zFekp-t7RL-_pwX5PXu9uXmodg-3z_ebLaFE0LNRSUE05WtKyYceBBto-q2zaeydF5olF60pVaIXMqaOc8V10zbRoNHL5u6vCBXx9wpjv8XTLPpQ3LYdXbAcUmGKdCqhkqJ76EKlITTqGSlkJzz6jRaVpIxmZMzqo6oi2NKEVszxdDbuDcMzKE-szNf9ZlDfSYr15edm6MT8yvfAkaTXMDBoQ8R3Wz8GE5mfAAxqaan</recordid><startdate>20130315</startdate><enddate>20130315</enddate><creator>Riasi, A.</creator><creator>Nourbakhsh, A.</creator><creator>Raisee, M.</creator><general>Elsevier Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7UA</scope><scope>C1K</scope><scope>F1W</scope><scope>H96</scope><scope>L.G</scope><scope>7SC</scope><scope>7TB</scope><scope>7U5</scope><scope>8FD</scope><scope>FR3</scope><scope>H8D</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20130315</creationdate><title>Energy dissipation in unsteady turbulent pipe flows caused by water hammer</title><author>Riasi, A. ; Nourbakhsh, A. ; Raisee, M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c447t-644196a8614c0d04fb78ff19633cd49e5d4f397ee25581cd272919ab90ded5b83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Computational fluid dynamics</topic><topic>Dimensional analysis</topic><topic>Dissipation</topic><topic>Energy dissipation</topic><topic>Fluid flow</topic><topic>k–ω Turbulence model</topic><topic>Mathematical models</topic><topic>Turbulence</topic><topic>Turbulent flow</topic><topic>Turbulent production</topic><topic>Unsteady</topic><topic>Water hammer</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Riasi, A.</creatorcontrib><creatorcontrib>Nourbakhsh, A.</creatorcontrib><creatorcontrib>Raisee, M.</creatorcontrib><collection>CrossRef</collection><collection>Water Resources Abstracts</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Computers & fluids</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Riasi, A.</au><au>Nourbakhsh, A.</au><au>Raisee, M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Energy dissipation in unsteady turbulent pipe flows caused by water hammer</atitle><jtitle>Computers & fluids</jtitle><date>2013-03-15</date><risdate>2013</risdate><volume>73</volume><spage>124</spage><epage>133</epage><pages>124-133</pages><issn>0045-7930</issn><eissn>1879-0747</eissn><abstract>Energy dissipation and turbulent kinetic energy production and its dissipation in unsteady turbulent pipe flows due to water hammer phenomena are numerically studied. For this purpose, the two-dimensional governing equations of water hammer are solved using the method of characteristics. A k–ω turbulence model which is accurate for two-dimensional boundary layers under adverse and favorable pressure gradients is applied. The numerical results are in good agreement with the experimental data. Through an order of magnitude analysis, two dimensionless parameters have been identified which can be used for the evaluation of viscous and turbulent shear stress terms. The influence of these non-dimensional parameters on pressure oscillations, wall-shear-stress, dissipation rate as well as profiles of velocity, turbulent production and dissipation are investigated. The non-dimensional parameter P, which represents time scale ratio of turbulence diffusion in the radial direction to the pressure wave speed, is used to study the structure and strength of turbulence. It is found that for the case of P≈1, for which the values of the non-dimensional groups are larger, the peaks of turbulence energy production and dissipation move rapidly away from the wall and turbulence structure is significantly changed. For the case of P≫1, for which the values of non-dimensional parameters are smaller, these variations are found to be small.</abstract><pub>Elsevier Ltd</pub><doi>10.1016/j.compfluid.2012.12.015</doi><tpages>10</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0045-7930 |
ispartof | Computers & fluids, 2013-03, Vol.73, p.124-133 |
issn | 0045-7930 1879-0747 |
language | eng |
recordid | cdi_proquest_miscellaneous_1709780674 |
source | Elsevier ScienceDirect Journals Complete - AutoHoldings |
subjects | Computational fluid dynamics Dimensional analysis Dissipation Energy dissipation Fluid flow k–ω Turbulence model Mathematical models Turbulence Turbulent flow Turbulent production Unsteady Water hammer |
title | Energy dissipation in unsteady turbulent pipe flows caused by water hammer |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-14T08%3A40%3A03IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Energy%20dissipation%20in%20unsteady%20turbulent%20pipe%20flows%20caused%20by%20water%20hammer&rft.jtitle=Computers%20&%20fluids&rft.au=Riasi,%20A.&rft.date=2013-03-15&rft.volume=73&rft.spage=124&rft.epage=133&rft.pages=124-133&rft.issn=0045-7930&rft.eissn=1879-0747&rft_id=info:doi/10.1016/j.compfluid.2012.12.015&rft_dat=%3Cproquest_cross%3E1513452226%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1365115977&rft_id=info:pmid/&rft_els_id=S0045793013000042&rfr_iscdi=true |