An Analytical Model of Homogeneous Charge Compression Ignition Engine for Performance Prediction

A zero dimensional thermodynamic model simulation is developed to simulate the combustion characteristics and performance of a four stroke homogeneous compression combustion ignition (HCCI) engine fueled with gasoline. This model which applies the first law of thermodynamics for a closed system is i...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Applied Mechanics and Materials 2014-06, Vol.564 (Advances in Mechanical and Manufacturing Engineering), p.8-12
Hauptverfasser: Nuraini, A.A., Inayatullah, Othman, Najihah, A. R.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 12
container_issue Advances in Mechanical and Manufacturing Engineering
container_start_page 8
container_title Applied Mechanics and Materials
container_volume 564
creator Nuraini, A.A.
Inayatullah, Othman
Najihah, A. R.
description A zero dimensional thermodynamic model simulation is developed to simulate the combustion characteristics and performance of a four stroke homogeneous compression combustion ignition (HCCI) engine fueled with gasoline. This model which applies the first law of thermodynamics for a closed system is inclusive of empirical model for predicting the important parameters for engine cycles: the combustion timing and mass burnt fraction during the combustion process. The hypothesis is the increasing intake temperature can reduce the combustion duration and the fuel consumption at wide range of equivalence ratio. The intake temperature were increased from 373-433 K with increment of 20 K. The engine was operated over a range of equivalence ratios of 0.2 to 0.5 at constant engine speed of 1200 rpm and intake pressure of 89,950 k Pa. Simulations were performed using Simulink® under different engine operating conditions. Increasing intake temperature allows reducing the combustion duration by 0.99 °CA and 0.26 °CA at equivalence ratios of 0.2 and 0.5, respectively. The brake specific fuel consumption decreases about 6.09%-5.76% at 0.2-0.5 of equivalence ratios. Thus, fuel consumption can be reduced by increasing intake temperature.
doi_str_mv 10.4028/www.scientific.net/AMM.564.8
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1709776300</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3725561371</sourcerecordid><originalsourceid>FETCH-LOGICAL-c378t-4cb34247eec33dc3c569d47388a1a4a07ba1aa477e319f6367f1fd13a03eb0433</originalsourceid><addsrcrecordid>eNqNkcFqGzEQhkWbQtI07yBIDr3sRtqRJS2EgjFJE4hJDslZlbWzjsKu5EprTN6-clxo6amnXzDfzDD6CLngrBas0Ze73a7OzmOYfO9dHXC6nC-X9UyKWn8gJ1zKplJCNx_JWas0MNAw40zPjt5rrGoB5DH5nPMrY1JwoU_Ij3mg82CHt8k7O9Bl7HCgsae3cYxrDBi3mS5ebFojXcRxkzBnHwO9Wwc_7R_XYe0D0j4m-oipxGiDQ_qYsPNuT3whn3o7ZDz7nafk-eb6aXFb3T98v1vM7ysHSk-VcCsQjVCIDqBz4Gay7YQCrS23wjK1KmmFUgi87SVI1fO-42AZ4IoJgFPy9TB3k-LPLebJjD47HAb7foThirVKSWCsoOf_oK9xm8onFEq2nDGlGl6oqwPlUsw5YW82yY82vRnOzF6HKTrMHx2m6DBFhyk6jC7t3w7tU7IhT-he_tryPwN-AX5rmTA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1691007721</pqid></control><display><type>article</type><title>An Analytical Model of Homogeneous Charge Compression Ignition Engine for Performance Prediction</title><source>Scientific.net Journals</source><creator>Nuraini, A.A. ; Inayatullah, Othman ; Najihah, A. R.</creator><creatorcontrib>Nuraini, A.A. ; Inayatullah, Othman ; Najihah, A. R.</creatorcontrib><description>A zero dimensional thermodynamic model simulation is developed to simulate the combustion characteristics and performance of a four stroke homogeneous compression combustion ignition (HCCI) engine fueled with gasoline. This model which applies the first law of thermodynamics for a closed system is inclusive of empirical model for predicting the important parameters for engine cycles: the combustion timing and mass burnt fraction during the combustion process. The hypothesis is the increasing intake temperature can reduce the combustion duration and the fuel consumption at wide range of equivalence ratio. The intake temperature were increased from 373-433 K with increment of 20 K. The engine was operated over a range of equivalence ratios of 0.2 to 0.5 at constant engine speed of 1200 rpm and intake pressure of 89,950 k Pa. Simulations were performed using Simulink® under different engine operating conditions. Increasing intake temperature allows reducing the combustion duration by 0.99 °CA and 0.26 °CA at equivalence ratios of 0.2 and 0.5, respectively. The brake specific fuel consumption decreases about 6.09%-5.76% at 0.2-0.5 of equivalence ratios. Thus, fuel consumption can be reduced by increasing intake temperature.</description><identifier>ISSN: 1660-9336</identifier><identifier>ISSN: 1662-7482</identifier><identifier>ISBN: 9783038351085</identifier><identifier>ISBN: 3038351083</identifier><identifier>EISSN: 1662-7482</identifier><identifier>DOI: 10.4028/www.scientific.net/AMM.564.8</identifier><language>eng</language><publisher>Zurich: Trans Tech Publications Ltd</publisher><subject>Combustion ; Computer simulation ; Engines ; Equivalence ratio ; Fuel consumption ; Ignition ; Intakes ; Mathematical models</subject><ispartof>Applied Mechanics and Materials, 2014-06, Vol.564 (Advances in Mechanical and Manufacturing Engineering), p.8-12</ispartof><rights>2014 Trans Tech Publications Ltd</rights><rights>Copyright Trans Tech Publications Ltd. Jun 2014</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c378t-4cb34247eec33dc3c569d47388a1a4a07ba1aa477e319f6367f1fd13a03eb0433</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttps://www.scientific.net/Image/TitleCover/3195?width=600</thumbnail><link.rule.ids>314,780,784,27923,27924</link.rule.ids></links><search><creatorcontrib>Nuraini, A.A.</creatorcontrib><creatorcontrib>Inayatullah, Othman</creatorcontrib><creatorcontrib>Najihah, A. R.</creatorcontrib><title>An Analytical Model of Homogeneous Charge Compression Ignition Engine for Performance Prediction</title><title>Applied Mechanics and Materials</title><description>A zero dimensional thermodynamic model simulation is developed to simulate the combustion characteristics and performance of a four stroke homogeneous compression combustion ignition (HCCI) engine fueled with gasoline. This model which applies the first law of thermodynamics for a closed system is inclusive of empirical model for predicting the important parameters for engine cycles: the combustion timing and mass burnt fraction during the combustion process. The hypothesis is the increasing intake temperature can reduce the combustion duration and the fuel consumption at wide range of equivalence ratio. The intake temperature were increased from 373-433 K with increment of 20 K. The engine was operated over a range of equivalence ratios of 0.2 to 0.5 at constant engine speed of 1200 rpm and intake pressure of 89,950 k Pa. Simulations were performed using Simulink® under different engine operating conditions. Increasing intake temperature allows reducing the combustion duration by 0.99 °CA and 0.26 °CA at equivalence ratios of 0.2 and 0.5, respectively. The brake specific fuel consumption decreases about 6.09%-5.76% at 0.2-0.5 of equivalence ratios. Thus, fuel consumption can be reduced by increasing intake temperature.</description><subject>Combustion</subject><subject>Computer simulation</subject><subject>Engines</subject><subject>Equivalence ratio</subject><subject>Fuel consumption</subject><subject>Ignition</subject><subject>Intakes</subject><subject>Mathematical models</subject><issn>1660-9336</issn><issn>1662-7482</issn><issn>1662-7482</issn><isbn>9783038351085</isbn><isbn>3038351083</isbn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNqNkcFqGzEQhkWbQtI07yBIDr3sRtqRJS2EgjFJE4hJDslZlbWzjsKu5EprTN6-clxo6amnXzDfzDD6CLngrBas0Ze73a7OzmOYfO9dHXC6nC-X9UyKWn8gJ1zKplJCNx_JWas0MNAw40zPjt5rrGoB5DH5nPMrY1JwoU_Ij3mg82CHt8k7O9Bl7HCgsae3cYxrDBi3mS5ebFojXcRxkzBnHwO9Wwc_7R_XYe0D0j4m-oipxGiDQ_qYsPNuT3whn3o7ZDz7nafk-eb6aXFb3T98v1vM7ysHSk-VcCsQjVCIDqBz4Gay7YQCrS23wjK1KmmFUgi87SVI1fO-42AZ4IoJgFPy9TB3k-LPLebJjD47HAb7foThirVKSWCsoOf_oK9xm8onFEq2nDGlGl6oqwPlUsw5YW82yY82vRnOzF6HKTrMHx2m6DBFhyk6jC7t3w7tU7IhT-he_tryPwN-AX5rmTA</recordid><startdate>20140606</startdate><enddate>20140606</enddate><creator>Nuraini, A.A.</creator><creator>Inayatullah, Othman</creator><creator>Najihah, A. R.</creator><general>Trans Tech Publications Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7TB</scope><scope>8BQ</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>BFMQW</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>KB.</scope><scope>KR7</scope><scope>L6V</scope><scope>M7S</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20140606</creationdate><title>An Analytical Model of Homogeneous Charge Compression Ignition Engine for Performance Prediction</title><author>Nuraini, A.A. ; Inayatullah, Othman ; Najihah, A. R.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c378t-4cb34247eec33dc3c569d47388a1a4a07ba1aa477e319f6367f1fd13a03eb0433</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Combustion</topic><topic>Computer simulation</topic><topic>Engines</topic><topic>Equivalence ratio</topic><topic>Fuel consumption</topic><topic>Ignition</topic><topic>Intakes</topic><topic>Mathematical models</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Nuraini, A.A.</creatorcontrib><creatorcontrib>Inayatullah, Othman</creatorcontrib><creatorcontrib>Najihah, A. R.</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central</collection><collection>Continental Europe Database</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>Materials Science Database</collection><collection>Civil Engineering Abstracts</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><jtitle>Applied Mechanics and Materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Nuraini, A.A.</au><au>Inayatullah, Othman</au><au>Najihah, A. R.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>An Analytical Model of Homogeneous Charge Compression Ignition Engine for Performance Prediction</atitle><jtitle>Applied Mechanics and Materials</jtitle><date>2014-06-06</date><risdate>2014</risdate><volume>564</volume><issue>Advances in Mechanical and Manufacturing Engineering</issue><spage>8</spage><epage>12</epage><pages>8-12</pages><issn>1660-9336</issn><issn>1662-7482</issn><eissn>1662-7482</eissn><isbn>9783038351085</isbn><isbn>3038351083</isbn><abstract>A zero dimensional thermodynamic model simulation is developed to simulate the combustion characteristics and performance of a four stroke homogeneous compression combustion ignition (HCCI) engine fueled with gasoline. This model which applies the first law of thermodynamics for a closed system is inclusive of empirical model for predicting the important parameters for engine cycles: the combustion timing and mass burnt fraction during the combustion process. The hypothesis is the increasing intake temperature can reduce the combustion duration and the fuel consumption at wide range of equivalence ratio. The intake temperature were increased from 373-433 K with increment of 20 K. The engine was operated over a range of equivalence ratios of 0.2 to 0.5 at constant engine speed of 1200 rpm and intake pressure of 89,950 k Pa. Simulations were performed using Simulink® under different engine operating conditions. Increasing intake temperature allows reducing the combustion duration by 0.99 °CA and 0.26 °CA at equivalence ratios of 0.2 and 0.5, respectively. The brake specific fuel consumption decreases about 6.09%-5.76% at 0.2-0.5 of equivalence ratios. Thus, fuel consumption can be reduced by increasing intake temperature.</abstract><cop>Zurich</cop><pub>Trans Tech Publications Ltd</pub><doi>10.4028/www.scientific.net/AMM.564.8</doi><tpages>5</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1660-9336
ispartof Applied Mechanics and Materials, 2014-06, Vol.564 (Advances in Mechanical and Manufacturing Engineering), p.8-12
issn 1660-9336
1662-7482
1662-7482
language eng
recordid cdi_proquest_miscellaneous_1709776300
source Scientific.net Journals
subjects Combustion
Computer simulation
Engines
Equivalence ratio
Fuel consumption
Ignition
Intakes
Mathematical models
title An Analytical Model of Homogeneous Charge Compression Ignition Engine for Performance Prediction
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-11T23%3A38%3A26IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=An%20Analytical%20Model%20of%20Homogeneous%20Charge%20Compression%20Ignition%20Engine%20for%20Performance%20Prediction&rft.jtitle=Applied%20Mechanics%20and%20Materials&rft.au=Nuraini,%20A.A.&rft.date=2014-06-06&rft.volume=564&rft.issue=Advances%20in%20Mechanical%20and%20Manufacturing%20Engineering&rft.spage=8&rft.epage=12&rft.pages=8-12&rft.issn=1660-9336&rft.eissn=1662-7482&rft.isbn=9783038351085&rft.isbn_list=3038351083&rft_id=info:doi/10.4028/www.scientific.net/AMM.564.8&rft_dat=%3Cproquest_cross%3E3725561371%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1691007721&rft_id=info:pmid/&rfr_iscdi=true