Enhancement of heat transfer in turbulent channel flow over dimpled surface

A systematic numerical investigation of heat transfer in turbulent channel flow over dimpled surface is conducted. Both symmetric (or spherical) and asymmetric dimple with different depth ratios (h/D) and skewness (Dx and Dz) are considered for a series of Reynolds numbers Re2H (based on bulk veloci...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of heat and mass transfer 2012-12, Vol.55 (25-26), p.8100-8121
Hauptverfasser: Chen, Yu, Chew, Yong Tian, Khoo, Boo Cheong
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 8121
container_issue 25-26
container_start_page 8100
container_title International journal of heat and mass transfer
container_volume 55
creator Chen, Yu
Chew, Yong Tian
Khoo, Boo Cheong
description A systematic numerical investigation of heat transfer in turbulent channel flow over dimpled surface is conducted. Both symmetric (or spherical) and asymmetric dimple with different depth ratios (h/D) and skewness (Dx and Dz) are considered for a series of Reynolds numbers Re2H (based on bulk velocity and full channel height) between 4000 and 6000 while Prandtl number Pr is fixed at 0.7. It is found that the optimum dimple configuration for enhancing heat transfer measured in terms of the volume goodness factor is obtained for the case of asymmetric dimple with a depth ratio of h/D=15% and stream-wise skewness of Dx=15%. The heat transfer capacity in terms of Nusselt number is significantly increased, while the associated pressure loss is kept almost to the same level as the symmetric dimple with the same depth ratio. The present study also suggests that the heat transfer enhancement is closely related to ejection with counter-rotating flow, intensified secondary flow and vortex structures at the downstream rim of asymmetric dimple. All these findings suggest that a carefully designed asymmetric dimpled surface presents a viable means of enhancing heat transfer compared to the symmetric dimple.
doi_str_mv 10.1016/j.ijheatmasstransfer.2012.08.043
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1709774682</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0017931012006722</els_id><sourcerecordid>1709774682</sourcerecordid><originalsourceid>FETCH-LOGICAL-c496t-7217315a97b690042abae9ae45dcce680d351a770415e8d6a8f2b471a76b85553</originalsourceid><addsrcrecordid>eNqNkT1PwzAQhi0EEqXwH7IgdUmwncQfG6jiuxILzJbjXFRXTlLspIh_j6MWFgaYLPsePXf3GqEFwRnBhF1tMrtZgx5aHcLgdRca8BnFhGZYZLjIj9CMCC5TSoQ8RjOMCU9lTvApOgthM11xwWbo-bZb685AC92Q9E0yKZNvX2K7ZBh9NbqpaiLYgUsa138k_S6Wa9tuHdRJGH2jDZyjk0a7ABeHc47e7m5flw_p6uX-cXmzSk0h2ZBySnhOSi15xSTGBdWVBqmhKGtjgAlc5yXRPM5HShA106KhVcHjE6tEWZb5HC323q3v30cIg2ptMOCc7qAfg4qrSc4LJujfKI35cM6wjOj1HjW-D8FDo7bettp_KoLVFLnaqN-RqylyhYWKkUfF5aGbDka7JjLGhh8PZUVcKmeRe9pzEFPa2WgJxkL8hdp6MIOqe_v_pl_kIKNH</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1221877609</pqid></control><display><type>article</type><title>Enhancement of heat transfer in turbulent channel flow over dimpled surface</title><source>Elsevier ScienceDirect Journals</source><creator>Chen, Yu ; Chew, Yong Tian ; Khoo, Boo Cheong</creator><creatorcontrib>Chen, Yu ; Chew, Yong Tian ; Khoo, Boo Cheong</creatorcontrib><description>A systematic numerical investigation of heat transfer in turbulent channel flow over dimpled surface is conducted. Both symmetric (or spherical) and asymmetric dimple with different depth ratios (h/D) and skewness (Dx and Dz) are considered for a series of Reynolds numbers Re2H (based on bulk velocity and full channel height) between 4000 and 6000 while Prandtl number Pr is fixed at 0.7. It is found that the optimum dimple configuration for enhancing heat transfer measured in terms of the volume goodness factor is obtained for the case of asymmetric dimple with a depth ratio of h/D=15% and stream-wise skewness of Dx=15%. The heat transfer capacity in terms of Nusselt number is significantly increased, while the associated pressure loss is kept almost to the same level as the symmetric dimple with the same depth ratio. The present study also suggests that the heat transfer enhancement is closely related to ejection with counter-rotating flow, intensified secondary flow and vortex structures at the downstream rim of asymmetric dimple. All these findings suggest that a carefully designed asymmetric dimpled surface presents a viable means of enhancing heat transfer compared to the symmetric dimple.</description><identifier>ISSN: 0017-9310</identifier><identifier>EISSN: 1879-2189</identifier><identifier>DOI: 10.1016/j.ijheatmasstransfer.2012.08.043</identifier><identifier>CODEN: IJHMAK</identifier><language>eng</language><publisher>Kidlington: Elsevier Ltd</publisher><subject>Applied sciences ; Asymmetry ; Computational fluid dynamics ; DES ; Design. Technologies. Operation analysis. Testing ; Dimple ; Dimpling ; Electronics ; Energy ; Energy. Thermal use of fuels ; Engines and turbines ; Equipments for energy generation and conversion: thermal, electrical, mechanical energy, etc ; Exact sciences and technology ; Fluid flow ; Heat transfer ; Integrated circuits ; Semiconductor electronics. Microelectronics. Optoelectronics. Solid state devices ; Theoretical studies. Data and constants. Metering ; Turbulence ; Turbulent channel flow ; Turbulent flow</subject><ispartof>International journal of heat and mass transfer, 2012-12, Vol.55 (25-26), p.8100-8121</ispartof><rights>2012 Elsevier Ltd</rights><rights>2014 INIST-CNRS</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c496t-7217315a97b690042abae9ae45dcce680d351a770415e8d6a8f2b471a76b85553</citedby><cites>FETCH-LOGICAL-c496t-7217315a97b690042abae9ae45dcce680d351a770415e8d6a8f2b471a76b85553</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0017931012006722$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65306</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=26470436$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Chen, Yu</creatorcontrib><creatorcontrib>Chew, Yong Tian</creatorcontrib><creatorcontrib>Khoo, Boo Cheong</creatorcontrib><title>Enhancement of heat transfer in turbulent channel flow over dimpled surface</title><title>International journal of heat and mass transfer</title><description>A systematic numerical investigation of heat transfer in turbulent channel flow over dimpled surface is conducted. Both symmetric (or spherical) and asymmetric dimple with different depth ratios (h/D) and skewness (Dx and Dz) are considered for a series of Reynolds numbers Re2H (based on bulk velocity and full channel height) between 4000 and 6000 while Prandtl number Pr is fixed at 0.7. It is found that the optimum dimple configuration for enhancing heat transfer measured in terms of the volume goodness factor is obtained for the case of asymmetric dimple with a depth ratio of h/D=15% and stream-wise skewness of Dx=15%. The heat transfer capacity in terms of Nusselt number is significantly increased, while the associated pressure loss is kept almost to the same level as the symmetric dimple with the same depth ratio. The present study also suggests that the heat transfer enhancement is closely related to ejection with counter-rotating flow, intensified secondary flow and vortex structures at the downstream rim of asymmetric dimple. All these findings suggest that a carefully designed asymmetric dimpled surface presents a viable means of enhancing heat transfer compared to the symmetric dimple.</description><subject>Applied sciences</subject><subject>Asymmetry</subject><subject>Computational fluid dynamics</subject><subject>DES</subject><subject>Design. Technologies. Operation analysis. Testing</subject><subject>Dimple</subject><subject>Dimpling</subject><subject>Electronics</subject><subject>Energy</subject><subject>Energy. Thermal use of fuels</subject><subject>Engines and turbines</subject><subject>Equipments for energy generation and conversion: thermal, electrical, mechanical energy, etc</subject><subject>Exact sciences and technology</subject><subject>Fluid flow</subject><subject>Heat transfer</subject><subject>Integrated circuits</subject><subject>Semiconductor electronics. Microelectronics. Optoelectronics. Solid state devices</subject><subject>Theoretical studies. Data and constants. Metering</subject><subject>Turbulence</subject><subject>Turbulent channel flow</subject><subject>Turbulent flow</subject><issn>0017-9310</issn><issn>1879-2189</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><recordid>eNqNkT1PwzAQhi0EEqXwH7IgdUmwncQfG6jiuxILzJbjXFRXTlLspIh_j6MWFgaYLPsePXf3GqEFwRnBhF1tMrtZgx5aHcLgdRca8BnFhGZYZLjIj9CMCC5TSoQ8RjOMCU9lTvApOgthM11xwWbo-bZb685AC92Q9E0yKZNvX2K7ZBh9NbqpaiLYgUsa138k_S6Wa9tuHdRJGH2jDZyjk0a7ABeHc47e7m5flw_p6uX-cXmzSk0h2ZBySnhOSi15xSTGBdWVBqmhKGtjgAlc5yXRPM5HShA106KhVcHjE6tEWZb5HC323q3v30cIg2ptMOCc7qAfg4qrSc4LJujfKI35cM6wjOj1HjW-D8FDo7bettp_KoLVFLnaqN-RqylyhYWKkUfF5aGbDka7JjLGhh8PZUVcKmeRe9pzEFPa2WgJxkL8hdp6MIOqe_v_pl_kIKNH</recordid><startdate>20121201</startdate><enddate>20121201</enddate><creator>Chen, Yu</creator><creator>Chew, Yong Tian</creator><creator>Khoo, Boo Cheong</creator><general>Elsevier Ltd</general><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QH</scope><scope>7UA</scope><scope>C1K</scope><scope>F1W</scope><scope>H96</scope><scope>L.G</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>H8D</scope><scope>KR7</scope><scope>L7M</scope></search><sort><creationdate>20121201</creationdate><title>Enhancement of heat transfer in turbulent channel flow over dimpled surface</title><author>Chen, Yu ; Chew, Yong Tian ; Khoo, Boo Cheong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c496t-7217315a97b690042abae9ae45dcce680d351a770415e8d6a8f2b471a76b85553</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Applied sciences</topic><topic>Asymmetry</topic><topic>Computational fluid dynamics</topic><topic>DES</topic><topic>Design. Technologies. Operation analysis. Testing</topic><topic>Dimple</topic><topic>Dimpling</topic><topic>Electronics</topic><topic>Energy</topic><topic>Energy. Thermal use of fuels</topic><topic>Engines and turbines</topic><topic>Equipments for energy generation and conversion: thermal, electrical, mechanical energy, etc</topic><topic>Exact sciences and technology</topic><topic>Fluid flow</topic><topic>Heat transfer</topic><topic>Integrated circuits</topic><topic>Semiconductor electronics. Microelectronics. Optoelectronics. Solid state devices</topic><topic>Theoretical studies. Data and constants. Metering</topic><topic>Turbulence</topic><topic>Turbulent channel flow</topic><topic>Turbulent flow</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chen, Yu</creatorcontrib><creatorcontrib>Chew, Yong Tian</creatorcontrib><creatorcontrib>Khoo, Boo Cheong</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Aqualine</collection><collection>Water Resources Abstracts</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>International journal of heat and mass transfer</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chen, Yu</au><au>Chew, Yong Tian</au><au>Khoo, Boo Cheong</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Enhancement of heat transfer in turbulent channel flow over dimpled surface</atitle><jtitle>International journal of heat and mass transfer</jtitle><date>2012-12-01</date><risdate>2012</risdate><volume>55</volume><issue>25-26</issue><spage>8100</spage><epage>8121</epage><pages>8100-8121</pages><issn>0017-9310</issn><eissn>1879-2189</eissn><coden>IJHMAK</coden><abstract>A systematic numerical investigation of heat transfer in turbulent channel flow over dimpled surface is conducted. Both symmetric (or spherical) and asymmetric dimple with different depth ratios (h/D) and skewness (Dx and Dz) are considered for a series of Reynolds numbers Re2H (based on bulk velocity and full channel height) between 4000 and 6000 while Prandtl number Pr is fixed at 0.7. It is found that the optimum dimple configuration for enhancing heat transfer measured in terms of the volume goodness factor is obtained for the case of asymmetric dimple with a depth ratio of h/D=15% and stream-wise skewness of Dx=15%. The heat transfer capacity in terms of Nusselt number is significantly increased, while the associated pressure loss is kept almost to the same level as the symmetric dimple with the same depth ratio. The present study also suggests that the heat transfer enhancement is closely related to ejection with counter-rotating flow, intensified secondary flow and vortex structures at the downstream rim of asymmetric dimple. All these findings suggest that a carefully designed asymmetric dimpled surface presents a viable means of enhancing heat transfer compared to the symmetric dimple.</abstract><cop>Kidlington</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.ijheatmasstransfer.2012.08.043</doi><tpages>22</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0017-9310
ispartof International journal of heat and mass transfer, 2012-12, Vol.55 (25-26), p.8100-8121
issn 0017-9310
1879-2189
language eng
recordid cdi_proquest_miscellaneous_1709774682
source Elsevier ScienceDirect Journals
subjects Applied sciences
Asymmetry
Computational fluid dynamics
DES
Design. Technologies. Operation analysis. Testing
Dimple
Dimpling
Electronics
Energy
Energy. Thermal use of fuels
Engines and turbines
Equipments for energy generation and conversion: thermal, electrical, mechanical energy, etc
Exact sciences and technology
Fluid flow
Heat transfer
Integrated circuits
Semiconductor electronics. Microelectronics. Optoelectronics. Solid state devices
Theoretical studies. Data and constants. Metering
Turbulence
Turbulent channel flow
Turbulent flow
title Enhancement of heat transfer in turbulent channel flow over dimpled surface
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-31T11%3A58%3A12IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Enhancement%20of%20heat%20transfer%20in%20turbulent%20channel%20flow%20over%20dimpled%20surface&rft.jtitle=International%20journal%20of%20heat%20and%20mass%20transfer&rft.au=Chen,%20Yu&rft.date=2012-12-01&rft.volume=55&rft.issue=25-26&rft.spage=8100&rft.epage=8121&rft.pages=8100-8121&rft.issn=0017-9310&rft.eissn=1879-2189&rft.coden=IJHMAK&rft_id=info:doi/10.1016/j.ijheatmasstransfer.2012.08.043&rft_dat=%3Cproquest_cross%3E1709774682%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1221877609&rft_id=info:pmid/&rft_els_id=S0017931012006722&rfr_iscdi=true