Three-dimensional hydrodynamic simulations of accretion in short-period Algols

Recent observations have shown that the direct-impact Algol systems U CrB and RS Vul possess gas located outside of the orbital plane, including a tilted accretion disc in U CrB. Observations of circumstellar gas surrounding the mass donor in RS Vul suggest magnetic effects could be responsible for...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Monthly notices of the Royal Astronomical Society 2012-12, Vol.427 (2), p.1702-1712
1. Verfasser: Raymer, Eric
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1712
container_issue 2
container_start_page 1702
container_title Monthly notices of the Royal Astronomical Society
container_volume 427
creator Raymer, Eric
description Recent observations have shown that the direct-impact Algol systems U CrB and RS Vul possess gas located outside of the orbital plane, including a tilted accretion disc in U CrB. Observations of circumstellar gas surrounding the mass donor in RS Vul suggest magnetic effects could be responsible for deflecting the accretion stream out of the orbital plane, resulting in a tilted disc. To determine whether a tilted disc is possible due to a deflected stream, we use three-dimensional hydrodynamic simulations of the mass transfer process in RS Vul. By deflecting the stream 45° out of the orbital plane and boosting the magnitude of the stream's velocity to Mach 30, we mimic the effects of magnetic activity near the first Lagrange point. We find that the modified stream parameters change the direct-impact nature of the system. The stream misses the surface of the star, and a slightly warped accretion disc forms with no more than 3° of disc tilt. The stream-disc interaction for the deflected stream forces a large degree of material above the orbital plane, increasing the out-of-plane flow drastically. Plotting the Hα emissivity in velocity space allows us to compare our results with tomographic observations. Deflecting and boosting the stream increases the emissivity in each v z slice of the out-of-plane flow by at least three and up to eight orders of magnitude compared to the undeflected case. We conclude that a deflected stream is a viable mechanism for producing the strong out-of-plane flows seen in the tomographic images of U CrB and RS Vul.
doi_str_mv 10.1111/j.1365-2966.2012.22090.x
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1709772082</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><oup_id>10.1111/j.1365-2966.2012.22090.x</oup_id><sourcerecordid>1257741634</sourcerecordid><originalsourceid>FETCH-LOGICAL-c5680-923a6476bf1625d6cffff9dcd619306e70e463078da3595be280cd7d643106a93</originalsourceid><addsrcrecordid>eNqNkVFLHDEUhYNYcLX9DwN98WXGm2TmZvJSELEqqIVin0NMMt0sM5M12aHuvzfjSh8U0fuShPudEziHkIJCRfOcrCrKsSmZRKwYUFYxBhKqxz2y-L_YJwsA3pStoPSAHKa0AoCaM1yQ27tldK60fnBj8mHUfbHc2hjsdtSDN0Xyw9TrTd6kInSFNia6-VX4sUjLEDfl2kUfbHHa_w19-kq-dLpP7tvLeUT-_Dy_O7ssr39dXJ2dXpemwRZKybjGWuB9R5E1Fk2XR1pjkUoO6AS4GjmI1mreyObesRaMFRZrTgG15EfkeOe7juFhcmmjBp-M63s9ujAlRQVIIRi07GOUNULUFHmd0e-v0FWYYs4kU9kRKUrkmWp3lIkhpeg6tY5-0HGrKKi5E7VSc_Rqjl7NnajnTtRjlv7YSf_53m0_rVM3t7-fr9mA7wzCtH5HXr799gmMm6Bp</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1170616963</pqid></control><display><type>article</type><title>Three-dimensional hydrodynamic simulations of accretion in short-period Algols</title><source>Open Access: Oxford University Press Open Journals</source><source>Wiley Blackwell Journals</source><creator>Raymer, Eric</creator><creatorcontrib>Raymer, Eric</creatorcontrib><description>Recent observations have shown that the direct-impact Algol systems U CrB and RS Vul possess gas located outside of the orbital plane, including a tilted accretion disc in U CrB. Observations of circumstellar gas surrounding the mass donor in RS Vul suggest magnetic effects could be responsible for deflecting the accretion stream out of the orbital plane, resulting in a tilted disc. To determine whether a tilted disc is possible due to a deflected stream, we use three-dimensional hydrodynamic simulations of the mass transfer process in RS Vul. By deflecting the stream 45° out of the orbital plane and boosting the magnitude of the stream's velocity to Mach 30, we mimic the effects of magnetic activity near the first Lagrange point. We find that the modified stream parameters change the direct-impact nature of the system. The stream misses the surface of the star, and a slightly warped accretion disc forms with no more than 3° of disc tilt. The stream-disc interaction for the deflected stream forces a large degree of material above the orbital plane, increasing the out-of-plane flow drastically. Plotting the Hα emissivity in velocity space allows us to compare our results with tomographic observations. Deflecting and boosting the stream increases the emissivity in each v z slice of the out-of-plane flow by at least three and up to eight orders of magnitude compared to the undeflected case. We conclude that a deflected stream is a viable mechanism for producing the strong out-of-plane flows seen in the tomographic images of U CrB and RS Vul.</description><identifier>ISSN: 0035-8711</identifier><identifier>EISSN: 1365-2966</identifier><identifier>DOI: 10.1111/j.1365-2966.2012.22090.x</identifier><language>eng</language><publisher>Oxford, UK: Blackwell Science Ltd</publisher><subject>Accretion disks ; accretion, accretion discs ; Astronomy ; binaries: close ; Deflection ; Gases ; Hydrodynamics ; Magnetism ; Orbitals ; Planes ; Solar system ; Streams ; Three dimensional ; Three dimensional imaging</subject><ispartof>Monthly notices of the Royal Astronomical Society, 2012-12, Vol.427 (2), p.1702-1712</ispartof><rights>2012 The Author Monthly Notices of the Royal Astronomical Society © 2012 RAS 2012</rights><rights>2012 The Author Monthly Notices of the Royal Astronomical Society © 2012 RAS</rights><rights>Monthly Notices of the Royal Astronomical Society © 2012 RAS</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c5680-923a6476bf1625d6cffff9dcd619306e70e463078da3595be280cd7d643106a93</citedby><cites>FETCH-LOGICAL-c5680-923a6476bf1625d6cffff9dcd619306e70e463078da3595be280cd7d643106a93</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1111%2Fj.1365-2966.2012.22090.x$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1111%2Fj.1365-2966.2012.22090.x$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,27924,27925,45574,45575</link.rule.ids></links><search><creatorcontrib>Raymer, Eric</creatorcontrib><title>Three-dimensional hydrodynamic simulations of accretion in short-period Algols</title><title>Monthly notices of the Royal Astronomical Society</title><addtitle>Mon. Not. R. Astron. Soc</addtitle><description>Recent observations have shown that the direct-impact Algol systems U CrB and RS Vul possess gas located outside of the orbital plane, including a tilted accretion disc in U CrB. Observations of circumstellar gas surrounding the mass donor in RS Vul suggest magnetic effects could be responsible for deflecting the accretion stream out of the orbital plane, resulting in a tilted disc. To determine whether a tilted disc is possible due to a deflected stream, we use three-dimensional hydrodynamic simulations of the mass transfer process in RS Vul. By deflecting the stream 45° out of the orbital plane and boosting the magnitude of the stream's velocity to Mach 30, we mimic the effects of magnetic activity near the first Lagrange point. We find that the modified stream parameters change the direct-impact nature of the system. The stream misses the surface of the star, and a slightly warped accretion disc forms with no more than 3° of disc tilt. The stream-disc interaction for the deflected stream forces a large degree of material above the orbital plane, increasing the out-of-plane flow drastically. Plotting the Hα emissivity in velocity space allows us to compare our results with tomographic observations. Deflecting and boosting the stream increases the emissivity in each v z slice of the out-of-plane flow by at least three and up to eight orders of magnitude compared to the undeflected case. We conclude that a deflected stream is a viable mechanism for producing the strong out-of-plane flows seen in the tomographic images of U CrB and RS Vul.</description><subject>Accretion disks</subject><subject>accretion, accretion discs</subject><subject>Astronomy</subject><subject>binaries: close</subject><subject>Deflection</subject><subject>Gases</subject><subject>Hydrodynamics</subject><subject>Magnetism</subject><subject>Orbitals</subject><subject>Planes</subject><subject>Solar system</subject><subject>Streams</subject><subject>Three dimensional</subject><subject>Three dimensional imaging</subject><issn>0035-8711</issn><issn>1365-2966</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><recordid>eNqNkVFLHDEUhYNYcLX9DwN98WXGm2TmZvJSELEqqIVin0NMMt0sM5M12aHuvzfjSh8U0fuShPudEziHkIJCRfOcrCrKsSmZRKwYUFYxBhKqxz2y-L_YJwsA3pStoPSAHKa0AoCaM1yQ27tldK60fnBj8mHUfbHc2hjsdtSDN0Xyw9TrTd6kInSFNia6-VX4sUjLEDfl2kUfbHHa_w19-kq-dLpP7tvLeUT-_Dy_O7ssr39dXJ2dXpemwRZKybjGWuB9R5E1Fk2XR1pjkUoO6AS4GjmI1mreyObesRaMFRZrTgG15EfkeOe7juFhcmmjBp-M63s9ujAlRQVIIRi07GOUNULUFHmd0e-v0FWYYs4kU9kRKUrkmWp3lIkhpeg6tY5-0HGrKKi5E7VSc_Rqjl7NnajnTtRjlv7YSf_53m0_rVM3t7-fr9mA7wzCtH5HXr799gmMm6Bp</recordid><startdate>20121201</startdate><enddate>20121201</enddate><creator>Raymer, Eric</creator><general>Blackwell Science Ltd</general><general>Oxford University Press</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><scope>7TG</scope><scope>KL.</scope></search><sort><creationdate>20121201</creationdate><title>Three-dimensional hydrodynamic simulations of accretion in short-period Algols</title><author>Raymer, Eric</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c5680-923a6476bf1625d6cffff9dcd619306e70e463078da3595be280cd7d643106a93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Accretion disks</topic><topic>accretion, accretion discs</topic><topic>Astronomy</topic><topic>binaries: close</topic><topic>Deflection</topic><topic>Gases</topic><topic>Hydrodynamics</topic><topic>Magnetism</topic><topic>Orbitals</topic><topic>Planes</topic><topic>Solar system</topic><topic>Streams</topic><topic>Three dimensional</topic><topic>Three dimensional imaging</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Raymer, Eric</creatorcontrib><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><jtitle>Monthly notices of the Royal Astronomical Society</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Raymer, Eric</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Three-dimensional hydrodynamic simulations of accretion in short-period Algols</atitle><jtitle>Monthly notices of the Royal Astronomical Society</jtitle><stitle>Mon. Not. R. Astron. Soc</stitle><date>2012-12-01</date><risdate>2012</risdate><volume>427</volume><issue>2</issue><spage>1702</spage><epage>1712</epage><pages>1702-1712</pages><issn>0035-8711</issn><eissn>1365-2966</eissn><abstract>Recent observations have shown that the direct-impact Algol systems U CrB and RS Vul possess gas located outside of the orbital plane, including a tilted accretion disc in U CrB. Observations of circumstellar gas surrounding the mass donor in RS Vul suggest magnetic effects could be responsible for deflecting the accretion stream out of the orbital plane, resulting in a tilted disc. To determine whether a tilted disc is possible due to a deflected stream, we use three-dimensional hydrodynamic simulations of the mass transfer process in RS Vul. By deflecting the stream 45° out of the orbital plane and boosting the magnitude of the stream's velocity to Mach 30, we mimic the effects of magnetic activity near the first Lagrange point. We find that the modified stream parameters change the direct-impact nature of the system. The stream misses the surface of the star, and a slightly warped accretion disc forms with no more than 3° of disc tilt. The stream-disc interaction for the deflected stream forces a large degree of material above the orbital plane, increasing the out-of-plane flow drastically. Plotting the Hα emissivity in velocity space allows us to compare our results with tomographic observations. Deflecting and boosting the stream increases the emissivity in each v z slice of the out-of-plane flow by at least three and up to eight orders of magnitude compared to the undeflected case. We conclude that a deflected stream is a viable mechanism for producing the strong out-of-plane flows seen in the tomographic images of U CrB and RS Vul.</abstract><cop>Oxford, UK</cop><pub>Blackwell Science Ltd</pub><doi>10.1111/j.1365-2966.2012.22090.x</doi><tpages>11</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0035-8711
ispartof Monthly notices of the Royal Astronomical Society, 2012-12, Vol.427 (2), p.1702-1712
issn 0035-8711
1365-2966
language eng
recordid cdi_proquest_miscellaneous_1709772082
source Open Access: Oxford University Press Open Journals; Wiley Blackwell Journals
subjects Accretion disks
accretion, accretion discs
Astronomy
binaries: close
Deflection
Gases
Hydrodynamics
Magnetism
Orbitals
Planes
Solar system
Streams
Three dimensional
Three dimensional imaging
title Three-dimensional hydrodynamic simulations of accretion in short-period Algols
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T05%3A44%3A39IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Three-dimensional%20hydrodynamic%20simulations%20of%20accretion%20in%20short-period%20Algols&rft.jtitle=Monthly%20notices%20of%20the%20Royal%20Astronomical%20Society&rft.au=Raymer,%20Eric&rft.date=2012-12-01&rft.volume=427&rft.issue=2&rft.spage=1702&rft.epage=1712&rft.pages=1702-1712&rft.issn=0035-8711&rft.eissn=1365-2966&rft_id=info:doi/10.1111/j.1365-2966.2012.22090.x&rft_dat=%3Cproquest_cross%3E1257741634%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1170616963&rft_id=info:pmid/&rft_oup_id=10.1111/j.1365-2966.2012.22090.x&rfr_iscdi=true