Hydrodynamic forces on a rotating sphere

► We study the hydrodynamic forces on a rotating sphere. ► Phase diagrams are employed to aid analysis. ► Isosurfaces of the wake structures are classified into flow regimes. ► Existence of shear layer instability is quantitatively compared. ► Oscillations amplitude and periodicity of the forces are...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The International journal of heat and fluid flow 2013-08, Vol.42, p.278-288
Hauptverfasser: Poon, Eric K.W., Ooi, Andrew S.H., Giacobello, Matteo, Cohen, Raymond C.Z.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 288
container_issue
container_start_page 278
container_title The International journal of heat and fluid flow
container_volume 42
creator Poon, Eric K.W.
Ooi, Andrew S.H.
Giacobello, Matteo
Cohen, Raymond C.Z.
description ► We study the hydrodynamic forces on a rotating sphere. ► Phase diagrams are employed to aid analysis. ► Isosurfaces of the wake structures are classified into flow regimes. ► Existence of shear layer instability is quantitatively compared. ► Oscillations amplitude and periodicity of the forces are highly correlated to the flow regimes. The wake dynamics of a rotating sphere with prescribed rotation axis angles are quantitatively analysed by carrying out numerical simulations at Reynolds numbers of Re=100, 250 and 300, non-dimensional rotational rates Ω∗=0–1 and rotation axis angles α=0, π/6, π/3 and π/2 measured from the free stream axis. These parameters are the same as those in an earlier study (Poon et al., 2010, Int. J. Heat Fluid Flow) where the instantaneous flow structures were discussed qualitatively. This study extends the findings of the earlier study by employing phase diagrams (CLx,CLy) and (CD,CL) to provide a quantitative analysis of the time-dependent behaviour of the flow structures. At Re=300 and Ω∗=0.05, the phase diagrams (CLx,CLy) show ‘saw tooth’ patterns for both α=0 and π/6. The ‘saw tooth’ pattern indicates that the flow structures comprise a higher frequency oscillation component at a Reynolds number of 300 which is not observed until Re≈800 for a stationary sphere. This ‘saw tooth’ pattern disappears as Ω∗ increases. The employment of the phase diagrams also reveals that different flow structures induce different oscillation amplitudes on both lateral force coefficients. With the exception of the vortices formed from a shear layer instability, all other flow regimes show larger fluctuations in CL than CD.
doi_str_mv 10.1016/j.ijheatfluidflow.2013.02.005
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1709769960</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0142727X13000404</els_id><sourcerecordid>1513487106</sourcerecordid><originalsourceid>FETCH-LOGICAL-c429t-b0235c6ca2c433e13e5435ff18b12861fb9ae4243a4b3579ab52507184c371df3</originalsourceid><addsrcrecordid>eNqNkD1PwzAURS0EEqXwH7JU6pLw_JE4GRhQBS1SJRaQ2CzHeaau0rjYKaj_nlStGFhgusu590qHkAmFjAItbteZW69Q97bduca2_itjQHkGLAPIz8iIlrJKGZPlORkBFSyVTL5dkqsY1wBQgJAjMl3sm-Cbfac3ziTWB4Mx8V2ik-B73bvuPYnbFQa8JhdWtxFvTjkmr48PL7NFunyeP83ul6kRrOrTGhjPTWE0M4JzpBxzwXNraVlTVhbU1pVGwQTXoua5rHSdsxwkLYXhkjaWj8n0uLsN_mOHsVcbFw22re7Q76KiEipZVFUBf6M55aKUFIoBvTuiJvgYA1q1DW6jw15RUAeZaq1-yVQHmQqYGmQO_cnpSkejWxt0Z1z8GWGyEBUTYuDmRw4HRZ8Og4rGYWewcQFNrxrv_vn4Denzkhc</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1513487106</pqid></control><display><type>article</type><title>Hydrodynamic forces on a rotating sphere</title><source>Elsevier ScienceDirect Journals</source><creator>Poon, Eric K.W. ; Ooi, Andrew S.H. ; Giacobello, Matteo ; Cohen, Raymond C.Z.</creator><creatorcontrib>Poon, Eric K.W. ; Ooi, Andrew S.H. ; Giacobello, Matteo ; Cohen, Raymond C.Z.</creatorcontrib><description>► We study the hydrodynamic forces on a rotating sphere. ► Phase diagrams are employed to aid analysis. ► Isosurfaces of the wake structures are classified into flow regimes. ► Existence of shear layer instability is quantitatively compared. ► Oscillations amplitude and periodicity of the forces are highly correlated to the flow regimes. The wake dynamics of a rotating sphere with prescribed rotation axis angles are quantitatively analysed by carrying out numerical simulations at Reynolds numbers of Re=100, 250 and 300, non-dimensional rotational rates Ω∗=0–1 and rotation axis angles α=0, π/6, π/3 and π/2 measured from the free stream axis. These parameters are the same as those in an earlier study (Poon et al., 2010, Int. J. Heat Fluid Flow) where the instantaneous flow structures were discussed qualitatively. This study extends the findings of the earlier study by employing phase diagrams (CLx,CLy) and (CD,CL) to provide a quantitative analysis of the time-dependent behaviour of the flow structures. At Re=300 and Ω∗=0.05, the phase diagrams (CLx,CLy) show ‘saw tooth’ patterns for both α=0 and π/6. The ‘saw tooth’ pattern indicates that the flow structures comprise a higher frequency oscillation component at a Reynolds number of 300 which is not observed until Re≈800 for a stationary sphere. This ‘saw tooth’ pattern disappears as Ω∗ increases. The employment of the phase diagrams also reveals that different flow structures induce different oscillation amplitudes on both lateral force coefficients. With the exception of the vortices formed from a shear layer instability, all other flow regimes show larger fluctuations in CL than CD.</description><identifier>ISSN: 0142-727X</identifier><identifier>EISSN: 1879-2278</identifier><identifier>DOI: 10.1016/j.ijheatfluidflow.2013.02.005</identifier><identifier>CODEN: IJHFD2</identifier><language>eng</language><publisher>New York, NY: Elsevier Inc</publisher><subject>Computational fluid dynamics ; Exact sciences and technology ; Fluid dynamics ; Fluid flow ; Fluids ; Fundamental areas of phenomenology (including applications) ; Hydrodynamic stability ; Instability of shear flows ; Mathematical models ; Oscillations ; Phase diagrams ; Physics ; Reynolds number ; Rotating axis angle ; Rotating spheres ; Rotational flow and vorticity ; Separated flows ; Sphere ; Time-histories ; Wake</subject><ispartof>The International journal of heat and fluid flow, 2013-08, Vol.42, p.278-288</ispartof><rights>2013 Elsevier Inc.</rights><rights>2014 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c429t-b0235c6ca2c433e13e5435ff18b12861fb9ae4243a4b3579ab52507184c371df3</citedby><cites>FETCH-LOGICAL-c429t-b0235c6ca2c433e13e5435ff18b12861fb9ae4243a4b3579ab52507184c371df3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0142727X13000404$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3536,27903,27904,65309</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=27649244$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Poon, Eric K.W.</creatorcontrib><creatorcontrib>Ooi, Andrew S.H.</creatorcontrib><creatorcontrib>Giacobello, Matteo</creatorcontrib><creatorcontrib>Cohen, Raymond C.Z.</creatorcontrib><title>Hydrodynamic forces on a rotating sphere</title><title>The International journal of heat and fluid flow</title><description>► We study the hydrodynamic forces on a rotating sphere. ► Phase diagrams are employed to aid analysis. ► Isosurfaces of the wake structures are classified into flow regimes. ► Existence of shear layer instability is quantitatively compared. ► Oscillations amplitude and periodicity of the forces are highly correlated to the flow regimes. The wake dynamics of a rotating sphere with prescribed rotation axis angles are quantitatively analysed by carrying out numerical simulations at Reynolds numbers of Re=100, 250 and 300, non-dimensional rotational rates Ω∗=0–1 and rotation axis angles α=0, π/6, π/3 and π/2 measured from the free stream axis. These parameters are the same as those in an earlier study (Poon et al., 2010, Int. J. Heat Fluid Flow) where the instantaneous flow structures were discussed qualitatively. This study extends the findings of the earlier study by employing phase diagrams (CLx,CLy) and (CD,CL) to provide a quantitative analysis of the time-dependent behaviour of the flow structures. At Re=300 and Ω∗=0.05, the phase diagrams (CLx,CLy) show ‘saw tooth’ patterns for both α=0 and π/6. The ‘saw tooth’ pattern indicates that the flow structures comprise a higher frequency oscillation component at a Reynolds number of 300 which is not observed until Re≈800 for a stationary sphere. This ‘saw tooth’ pattern disappears as Ω∗ increases. The employment of the phase diagrams also reveals that different flow structures induce different oscillation amplitudes on both lateral force coefficients. With the exception of the vortices formed from a shear layer instability, all other flow regimes show larger fluctuations in CL than CD.</description><subject>Computational fluid dynamics</subject><subject>Exact sciences and technology</subject><subject>Fluid dynamics</subject><subject>Fluid flow</subject><subject>Fluids</subject><subject>Fundamental areas of phenomenology (including applications)</subject><subject>Hydrodynamic stability</subject><subject>Instability of shear flows</subject><subject>Mathematical models</subject><subject>Oscillations</subject><subject>Phase diagrams</subject><subject>Physics</subject><subject>Reynolds number</subject><subject>Rotating axis angle</subject><subject>Rotating spheres</subject><subject>Rotational flow and vorticity</subject><subject>Separated flows</subject><subject>Sphere</subject><subject>Time-histories</subject><subject>Wake</subject><issn>0142-727X</issn><issn>1879-2278</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><recordid>eNqNkD1PwzAURS0EEqXwH7JU6pLw_JE4GRhQBS1SJRaQ2CzHeaau0rjYKaj_nlStGFhgusu590qHkAmFjAItbteZW69Q97bduca2_itjQHkGLAPIz8iIlrJKGZPlORkBFSyVTL5dkqsY1wBQgJAjMl3sm-Cbfac3ziTWB4Mx8V2ik-B73bvuPYnbFQa8JhdWtxFvTjkmr48PL7NFunyeP83ul6kRrOrTGhjPTWE0M4JzpBxzwXNraVlTVhbU1pVGwQTXoua5rHSdsxwkLYXhkjaWj8n0uLsN_mOHsVcbFw22re7Q76KiEipZVFUBf6M55aKUFIoBvTuiJvgYA1q1DW6jw15RUAeZaq1-yVQHmQqYGmQO_cnpSkejWxt0Z1z8GWGyEBUTYuDmRw4HRZ8Og4rGYWewcQFNrxrv_vn4Denzkhc</recordid><startdate>20130801</startdate><enddate>20130801</enddate><creator>Poon, Eric K.W.</creator><creator>Ooi, Andrew S.H.</creator><creator>Giacobello, Matteo</creator><creator>Cohen, Raymond C.Z.</creator><general>Elsevier Inc</general><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QH</scope><scope>7UA</scope><scope>C1K</scope><scope>F1W</scope><scope>H96</scope><scope>L.G</scope><scope>7TB</scope><scope>7U5</scope><scope>8FD</scope><scope>FR3</scope><scope>H8D</scope><scope>KR7</scope><scope>L7M</scope></search><sort><creationdate>20130801</creationdate><title>Hydrodynamic forces on a rotating sphere</title><author>Poon, Eric K.W. ; Ooi, Andrew S.H. ; Giacobello, Matteo ; Cohen, Raymond C.Z.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c429t-b0235c6ca2c433e13e5435ff18b12861fb9ae4243a4b3579ab52507184c371df3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Computational fluid dynamics</topic><topic>Exact sciences and technology</topic><topic>Fluid dynamics</topic><topic>Fluid flow</topic><topic>Fluids</topic><topic>Fundamental areas of phenomenology (including applications)</topic><topic>Hydrodynamic stability</topic><topic>Instability of shear flows</topic><topic>Mathematical models</topic><topic>Oscillations</topic><topic>Phase diagrams</topic><topic>Physics</topic><topic>Reynolds number</topic><topic>Rotating axis angle</topic><topic>Rotating spheres</topic><topic>Rotational flow and vorticity</topic><topic>Separated flows</topic><topic>Sphere</topic><topic>Time-histories</topic><topic>Wake</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Poon, Eric K.W.</creatorcontrib><creatorcontrib>Ooi, Andrew S.H.</creatorcontrib><creatorcontrib>Giacobello, Matteo</creatorcontrib><creatorcontrib>Cohen, Raymond C.Z.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Aqualine</collection><collection>Water Resources Abstracts</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>The International journal of heat and fluid flow</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Poon, Eric K.W.</au><au>Ooi, Andrew S.H.</au><au>Giacobello, Matteo</au><au>Cohen, Raymond C.Z.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Hydrodynamic forces on a rotating sphere</atitle><jtitle>The International journal of heat and fluid flow</jtitle><date>2013-08-01</date><risdate>2013</risdate><volume>42</volume><spage>278</spage><epage>288</epage><pages>278-288</pages><issn>0142-727X</issn><eissn>1879-2278</eissn><coden>IJHFD2</coden><abstract>► We study the hydrodynamic forces on a rotating sphere. ► Phase diagrams are employed to aid analysis. ► Isosurfaces of the wake structures are classified into flow regimes. ► Existence of shear layer instability is quantitatively compared. ► Oscillations amplitude and periodicity of the forces are highly correlated to the flow regimes. The wake dynamics of a rotating sphere with prescribed rotation axis angles are quantitatively analysed by carrying out numerical simulations at Reynolds numbers of Re=100, 250 and 300, non-dimensional rotational rates Ω∗=0–1 and rotation axis angles α=0, π/6, π/3 and π/2 measured from the free stream axis. These parameters are the same as those in an earlier study (Poon et al., 2010, Int. J. Heat Fluid Flow) where the instantaneous flow structures were discussed qualitatively. This study extends the findings of the earlier study by employing phase diagrams (CLx,CLy) and (CD,CL) to provide a quantitative analysis of the time-dependent behaviour of the flow structures. At Re=300 and Ω∗=0.05, the phase diagrams (CLx,CLy) show ‘saw tooth’ patterns for both α=0 and π/6. The ‘saw tooth’ pattern indicates that the flow structures comprise a higher frequency oscillation component at a Reynolds number of 300 which is not observed until Re≈800 for a stationary sphere. This ‘saw tooth’ pattern disappears as Ω∗ increases. The employment of the phase diagrams also reveals that different flow structures induce different oscillation amplitudes on both lateral force coefficients. With the exception of the vortices formed from a shear layer instability, all other flow regimes show larger fluctuations in CL than CD.</abstract><cop>New York, NY</cop><pub>Elsevier Inc</pub><doi>10.1016/j.ijheatfluidflow.2013.02.005</doi><tpages>11</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0142-727X
ispartof The International journal of heat and fluid flow, 2013-08, Vol.42, p.278-288
issn 0142-727X
1879-2278
language eng
recordid cdi_proquest_miscellaneous_1709769960
source Elsevier ScienceDirect Journals
subjects Computational fluid dynamics
Exact sciences and technology
Fluid dynamics
Fluid flow
Fluids
Fundamental areas of phenomenology (including applications)
Hydrodynamic stability
Instability of shear flows
Mathematical models
Oscillations
Phase diagrams
Physics
Reynolds number
Rotating axis angle
Rotating spheres
Rotational flow and vorticity
Separated flows
Sphere
Time-histories
Wake
title Hydrodynamic forces on a rotating sphere
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T01%3A34%3A19IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Hydrodynamic%20forces%20on%20a%20rotating%20sphere&rft.jtitle=The%20International%20journal%20of%20heat%20and%20fluid%20flow&rft.au=Poon,%20Eric%20K.W.&rft.date=2013-08-01&rft.volume=42&rft.spage=278&rft.epage=288&rft.pages=278-288&rft.issn=0142-727X&rft.eissn=1879-2278&rft.coden=IJHFD2&rft_id=info:doi/10.1016/j.ijheatfluidflow.2013.02.005&rft_dat=%3Cproquest_cross%3E1513487106%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1513487106&rft_id=info:pmid/&rft_els_id=S0142727X13000404&rfr_iscdi=true