Hydrodynamic forces on a rotating sphere
► We study the hydrodynamic forces on a rotating sphere. ► Phase diagrams are employed to aid analysis. ► Isosurfaces of the wake structures are classified into flow regimes. ► Existence of shear layer instability is quantitatively compared. ► Oscillations amplitude and periodicity of the forces are...
Gespeichert in:
Veröffentlicht in: | The International journal of heat and fluid flow 2013-08, Vol.42, p.278-288 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 288 |
---|---|
container_issue | |
container_start_page | 278 |
container_title | The International journal of heat and fluid flow |
container_volume | 42 |
creator | Poon, Eric K.W. Ooi, Andrew S.H. Giacobello, Matteo Cohen, Raymond C.Z. |
description | ► We study the hydrodynamic forces on a rotating sphere. ► Phase diagrams are employed to aid analysis. ► Isosurfaces of the wake structures are classified into flow regimes. ► Existence of shear layer instability is quantitatively compared. ► Oscillations amplitude and periodicity of the forces are highly correlated to the flow regimes.
The wake dynamics of a rotating sphere with prescribed rotation axis angles are quantitatively analysed by carrying out numerical simulations at Reynolds numbers of Re=100, 250 and 300, non-dimensional rotational rates Ω∗=0–1 and rotation axis angles α=0, π/6, π/3 and π/2 measured from the free stream axis. These parameters are the same as those in an earlier study (Poon et al., 2010, Int. J. Heat Fluid Flow) where the instantaneous flow structures were discussed qualitatively. This study extends the findings of the earlier study by employing phase diagrams (CLx,CLy) and (CD,CL) to provide a quantitative analysis of the time-dependent behaviour of the flow structures. At Re=300 and Ω∗=0.05, the phase diagrams (CLx,CLy) show ‘saw tooth’ patterns for both α=0 and π/6. The ‘saw tooth’ pattern indicates that the flow structures comprise a higher frequency oscillation component at a Reynolds number of 300 which is not observed until Re≈800 for a stationary sphere. This ‘saw tooth’ pattern disappears as Ω∗ increases. The employment of the phase diagrams also reveals that different flow structures induce different oscillation amplitudes on both lateral force coefficients. With the exception of the vortices formed from a shear layer instability, all other flow regimes show larger fluctuations in CL than CD. |
doi_str_mv | 10.1016/j.ijheatfluidflow.2013.02.005 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1709769960</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0142727X13000404</els_id><sourcerecordid>1513487106</sourcerecordid><originalsourceid>FETCH-LOGICAL-c429t-b0235c6ca2c433e13e5435ff18b12861fb9ae4243a4b3579ab52507184c371df3</originalsourceid><addsrcrecordid>eNqNkD1PwzAURS0EEqXwH7JU6pLw_JE4GRhQBS1SJRaQ2CzHeaau0rjYKaj_nlStGFhgusu590qHkAmFjAItbteZW69Q97bduca2_itjQHkGLAPIz8iIlrJKGZPlORkBFSyVTL5dkqsY1wBQgJAjMl3sm-Cbfac3ziTWB4Mx8V2ik-B73bvuPYnbFQa8JhdWtxFvTjkmr48PL7NFunyeP83ul6kRrOrTGhjPTWE0M4JzpBxzwXNraVlTVhbU1pVGwQTXoua5rHSdsxwkLYXhkjaWj8n0uLsN_mOHsVcbFw22re7Q76KiEipZVFUBf6M55aKUFIoBvTuiJvgYA1q1DW6jw15RUAeZaq1-yVQHmQqYGmQO_cnpSkejWxt0Z1z8GWGyEBUTYuDmRw4HRZ8Og4rGYWewcQFNrxrv_vn4Denzkhc</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1513487106</pqid></control><display><type>article</type><title>Hydrodynamic forces on a rotating sphere</title><source>Elsevier ScienceDirect Journals</source><creator>Poon, Eric K.W. ; Ooi, Andrew S.H. ; Giacobello, Matteo ; Cohen, Raymond C.Z.</creator><creatorcontrib>Poon, Eric K.W. ; Ooi, Andrew S.H. ; Giacobello, Matteo ; Cohen, Raymond C.Z.</creatorcontrib><description>► We study the hydrodynamic forces on a rotating sphere. ► Phase diagrams are employed to aid analysis. ► Isosurfaces of the wake structures are classified into flow regimes. ► Existence of shear layer instability is quantitatively compared. ► Oscillations amplitude and periodicity of the forces are highly correlated to the flow regimes.
The wake dynamics of a rotating sphere with prescribed rotation axis angles are quantitatively analysed by carrying out numerical simulations at Reynolds numbers of Re=100, 250 and 300, non-dimensional rotational rates Ω∗=0–1 and rotation axis angles α=0, π/6, π/3 and π/2 measured from the free stream axis. These parameters are the same as those in an earlier study (Poon et al., 2010, Int. J. Heat Fluid Flow) where the instantaneous flow structures were discussed qualitatively. This study extends the findings of the earlier study by employing phase diagrams (CLx,CLy) and (CD,CL) to provide a quantitative analysis of the time-dependent behaviour of the flow structures. At Re=300 and Ω∗=0.05, the phase diagrams (CLx,CLy) show ‘saw tooth’ patterns for both α=0 and π/6. The ‘saw tooth’ pattern indicates that the flow structures comprise a higher frequency oscillation component at a Reynolds number of 300 which is not observed until Re≈800 for a stationary sphere. This ‘saw tooth’ pattern disappears as Ω∗ increases. The employment of the phase diagrams also reveals that different flow structures induce different oscillation amplitudes on both lateral force coefficients. With the exception of the vortices formed from a shear layer instability, all other flow regimes show larger fluctuations in CL than CD.</description><identifier>ISSN: 0142-727X</identifier><identifier>EISSN: 1879-2278</identifier><identifier>DOI: 10.1016/j.ijheatfluidflow.2013.02.005</identifier><identifier>CODEN: IJHFD2</identifier><language>eng</language><publisher>New York, NY: Elsevier Inc</publisher><subject>Computational fluid dynamics ; Exact sciences and technology ; Fluid dynamics ; Fluid flow ; Fluids ; Fundamental areas of phenomenology (including applications) ; Hydrodynamic stability ; Instability of shear flows ; Mathematical models ; Oscillations ; Phase diagrams ; Physics ; Reynolds number ; Rotating axis angle ; Rotating spheres ; Rotational flow and vorticity ; Separated flows ; Sphere ; Time-histories ; Wake</subject><ispartof>The International journal of heat and fluid flow, 2013-08, Vol.42, p.278-288</ispartof><rights>2013 Elsevier Inc.</rights><rights>2014 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c429t-b0235c6ca2c433e13e5435ff18b12861fb9ae4243a4b3579ab52507184c371df3</citedby><cites>FETCH-LOGICAL-c429t-b0235c6ca2c433e13e5435ff18b12861fb9ae4243a4b3579ab52507184c371df3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0142727X13000404$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3536,27903,27904,65309</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=27649244$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Poon, Eric K.W.</creatorcontrib><creatorcontrib>Ooi, Andrew S.H.</creatorcontrib><creatorcontrib>Giacobello, Matteo</creatorcontrib><creatorcontrib>Cohen, Raymond C.Z.</creatorcontrib><title>Hydrodynamic forces on a rotating sphere</title><title>The International journal of heat and fluid flow</title><description>► We study the hydrodynamic forces on a rotating sphere. ► Phase diagrams are employed to aid analysis. ► Isosurfaces of the wake structures are classified into flow regimes. ► Existence of shear layer instability is quantitatively compared. ► Oscillations amplitude and periodicity of the forces are highly correlated to the flow regimes.
The wake dynamics of a rotating sphere with prescribed rotation axis angles are quantitatively analysed by carrying out numerical simulations at Reynolds numbers of Re=100, 250 and 300, non-dimensional rotational rates Ω∗=0–1 and rotation axis angles α=0, π/6, π/3 and π/2 measured from the free stream axis. These parameters are the same as those in an earlier study (Poon et al., 2010, Int. J. Heat Fluid Flow) where the instantaneous flow structures were discussed qualitatively. This study extends the findings of the earlier study by employing phase diagrams (CLx,CLy) and (CD,CL) to provide a quantitative analysis of the time-dependent behaviour of the flow structures. At Re=300 and Ω∗=0.05, the phase diagrams (CLx,CLy) show ‘saw tooth’ patterns for both α=0 and π/6. The ‘saw tooth’ pattern indicates that the flow structures comprise a higher frequency oscillation component at a Reynolds number of 300 which is not observed until Re≈800 for a stationary sphere. This ‘saw tooth’ pattern disappears as Ω∗ increases. The employment of the phase diagrams also reveals that different flow structures induce different oscillation amplitudes on both lateral force coefficients. With the exception of the vortices formed from a shear layer instability, all other flow regimes show larger fluctuations in CL than CD.</description><subject>Computational fluid dynamics</subject><subject>Exact sciences and technology</subject><subject>Fluid dynamics</subject><subject>Fluid flow</subject><subject>Fluids</subject><subject>Fundamental areas of phenomenology (including applications)</subject><subject>Hydrodynamic stability</subject><subject>Instability of shear flows</subject><subject>Mathematical models</subject><subject>Oscillations</subject><subject>Phase diagrams</subject><subject>Physics</subject><subject>Reynolds number</subject><subject>Rotating axis angle</subject><subject>Rotating spheres</subject><subject>Rotational flow and vorticity</subject><subject>Separated flows</subject><subject>Sphere</subject><subject>Time-histories</subject><subject>Wake</subject><issn>0142-727X</issn><issn>1879-2278</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><recordid>eNqNkD1PwzAURS0EEqXwH7JU6pLw_JE4GRhQBS1SJRaQ2CzHeaau0rjYKaj_nlStGFhgusu590qHkAmFjAItbteZW69Q97bduca2_itjQHkGLAPIz8iIlrJKGZPlORkBFSyVTL5dkqsY1wBQgJAjMl3sm-Cbfac3ziTWB4Mx8V2ik-B73bvuPYnbFQa8JhdWtxFvTjkmr48PL7NFunyeP83ul6kRrOrTGhjPTWE0M4JzpBxzwXNraVlTVhbU1pVGwQTXoua5rHSdsxwkLYXhkjaWj8n0uLsN_mOHsVcbFw22re7Q76KiEipZVFUBf6M55aKUFIoBvTuiJvgYA1q1DW6jw15RUAeZaq1-yVQHmQqYGmQO_cnpSkejWxt0Z1z8GWGyEBUTYuDmRw4HRZ8Og4rGYWewcQFNrxrv_vn4Denzkhc</recordid><startdate>20130801</startdate><enddate>20130801</enddate><creator>Poon, Eric K.W.</creator><creator>Ooi, Andrew S.H.</creator><creator>Giacobello, Matteo</creator><creator>Cohen, Raymond C.Z.</creator><general>Elsevier Inc</general><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QH</scope><scope>7UA</scope><scope>C1K</scope><scope>F1W</scope><scope>H96</scope><scope>L.G</scope><scope>7TB</scope><scope>7U5</scope><scope>8FD</scope><scope>FR3</scope><scope>H8D</scope><scope>KR7</scope><scope>L7M</scope></search><sort><creationdate>20130801</creationdate><title>Hydrodynamic forces on a rotating sphere</title><author>Poon, Eric K.W. ; Ooi, Andrew S.H. ; Giacobello, Matteo ; Cohen, Raymond C.Z.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c429t-b0235c6ca2c433e13e5435ff18b12861fb9ae4243a4b3579ab52507184c371df3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Computational fluid dynamics</topic><topic>Exact sciences and technology</topic><topic>Fluid dynamics</topic><topic>Fluid flow</topic><topic>Fluids</topic><topic>Fundamental areas of phenomenology (including applications)</topic><topic>Hydrodynamic stability</topic><topic>Instability of shear flows</topic><topic>Mathematical models</topic><topic>Oscillations</topic><topic>Phase diagrams</topic><topic>Physics</topic><topic>Reynolds number</topic><topic>Rotating axis angle</topic><topic>Rotating spheres</topic><topic>Rotational flow and vorticity</topic><topic>Separated flows</topic><topic>Sphere</topic><topic>Time-histories</topic><topic>Wake</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Poon, Eric K.W.</creatorcontrib><creatorcontrib>Ooi, Andrew S.H.</creatorcontrib><creatorcontrib>Giacobello, Matteo</creatorcontrib><creatorcontrib>Cohen, Raymond C.Z.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Aqualine</collection><collection>Water Resources Abstracts</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>The International journal of heat and fluid flow</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Poon, Eric K.W.</au><au>Ooi, Andrew S.H.</au><au>Giacobello, Matteo</au><au>Cohen, Raymond C.Z.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Hydrodynamic forces on a rotating sphere</atitle><jtitle>The International journal of heat and fluid flow</jtitle><date>2013-08-01</date><risdate>2013</risdate><volume>42</volume><spage>278</spage><epage>288</epage><pages>278-288</pages><issn>0142-727X</issn><eissn>1879-2278</eissn><coden>IJHFD2</coden><abstract>► We study the hydrodynamic forces on a rotating sphere. ► Phase diagrams are employed to aid analysis. ► Isosurfaces of the wake structures are classified into flow regimes. ► Existence of shear layer instability is quantitatively compared. ► Oscillations amplitude and periodicity of the forces are highly correlated to the flow regimes.
The wake dynamics of a rotating sphere with prescribed rotation axis angles are quantitatively analysed by carrying out numerical simulations at Reynolds numbers of Re=100, 250 and 300, non-dimensional rotational rates Ω∗=0–1 and rotation axis angles α=0, π/6, π/3 and π/2 measured from the free stream axis. These parameters are the same as those in an earlier study (Poon et al., 2010, Int. J. Heat Fluid Flow) where the instantaneous flow structures were discussed qualitatively. This study extends the findings of the earlier study by employing phase diagrams (CLx,CLy) and (CD,CL) to provide a quantitative analysis of the time-dependent behaviour of the flow structures. At Re=300 and Ω∗=0.05, the phase diagrams (CLx,CLy) show ‘saw tooth’ patterns for both α=0 and π/6. The ‘saw tooth’ pattern indicates that the flow structures comprise a higher frequency oscillation component at a Reynolds number of 300 which is not observed until Re≈800 for a stationary sphere. This ‘saw tooth’ pattern disappears as Ω∗ increases. The employment of the phase diagrams also reveals that different flow structures induce different oscillation amplitudes on both lateral force coefficients. With the exception of the vortices formed from a shear layer instability, all other flow regimes show larger fluctuations in CL than CD.</abstract><cop>New York, NY</cop><pub>Elsevier Inc</pub><doi>10.1016/j.ijheatfluidflow.2013.02.005</doi><tpages>11</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0142-727X |
ispartof | The International journal of heat and fluid flow, 2013-08, Vol.42, p.278-288 |
issn | 0142-727X 1879-2278 |
language | eng |
recordid | cdi_proquest_miscellaneous_1709769960 |
source | Elsevier ScienceDirect Journals |
subjects | Computational fluid dynamics Exact sciences and technology Fluid dynamics Fluid flow Fluids Fundamental areas of phenomenology (including applications) Hydrodynamic stability Instability of shear flows Mathematical models Oscillations Phase diagrams Physics Reynolds number Rotating axis angle Rotating spheres Rotational flow and vorticity Separated flows Sphere Time-histories Wake |
title | Hydrodynamic forces on a rotating sphere |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T01%3A34%3A19IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Hydrodynamic%20forces%20on%20a%20rotating%20sphere&rft.jtitle=The%20International%20journal%20of%20heat%20and%20fluid%20flow&rft.au=Poon,%20Eric%20K.W.&rft.date=2013-08-01&rft.volume=42&rft.spage=278&rft.epage=288&rft.pages=278-288&rft.issn=0142-727X&rft.eissn=1879-2278&rft.coden=IJHFD2&rft_id=info:doi/10.1016/j.ijheatfluidflow.2013.02.005&rft_dat=%3Cproquest_cross%3E1513487106%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1513487106&rft_id=info:pmid/&rft_els_id=S0142727X13000404&rfr_iscdi=true |