Theoretical study of the dynamics of atomic hydrogen adsorbed on graphene multilayers

We present a theoretical study of the dynamics of H atoms adsorbed on graphene bilayers with Bernal stacking. First, through extensive density functional theory calculations, including van der Waals interactions, we obtain the activation barriers involved in the desorption and migration processes of...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physical review. B, Condensed matter and materials physics Condensed matter and materials physics, 2015-04, Vol.91 (15), Article 155419
Hauptverfasser: Moaied, Mohammed, Moreno, J. A., Caturla, M. J., Ynduráin, Félix, Palacios, J. J.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 15
container_start_page
container_title Physical review. B, Condensed matter and materials physics
container_volume 91
creator Moaied, Mohammed
Moreno, J. A.
Caturla, M. J.
Ynduráin, Félix
Palacios, J. J.
description We present a theoretical study of the dynamics of H atoms adsorbed on graphene bilayers with Bernal stacking. First, through extensive density functional theory calculations, including van der Waals interactions, we obtain the activation barriers involved in the desorption and migration processes of a single H atom. These barriers, along with attempt rates and the energetics of H pairs, are used as input parameters in kinetic Monte Carlo simulations to study the time evolution of an initial random distribution of adsorbed H atoms. The simulations reveal that, at room temperature, H atoms occupy only one sublattice before they completely desorb or form clusters. This sublattice selectivity in the distribution of H atoms may last for sufficiently long periods of time upon lowering the temperature down to 0[degrees]C. The final fate of the H atoms, namely, desorption or cluster formation, depends on the actual relative values of the activation barriers which can be tuned by doping. In some cases, a sublattice selectivity can be obtained for periods of time experimentally relevant even at room temperature. This result shows the possibility for observation and applications of the ferromagnetic state associated with such distribution.
doi_str_mv 10.1103/PhysRevB.91.155419
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1709768482</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1709768482</sourcerecordid><originalsourceid>FETCH-LOGICAL-c324t-7abcc34a4690c3c7e830d3d881841a3c0efb73ee25fc794c4520f7eb613b71453</originalsourceid><addsrcrecordid>eNo1kEFLwzAYhoMoOKd_wFOOXjrzJenSHHXoFAaKbOAtpOnXtdI2M2mF_ns7pqf3eeHlPTyE3AJbADBx_16N8QN_HhcaFpCmEvQZmU3AEi7Sz_OJmc4SBhwuyVWMX4yB1JLPyG5boQ_Y1842NPZDMVJf0r5CWoydbWsXj932fkJajUXwe-yoLaIPORbUd3Qf7KHCDmk7NH3d2BFDvCYXpW0i3vzlnOyen7arl2Tztn5dPWwSJ7jsE2Vz54S0cqmZE05hJlghiiyDTIIVjmGZK4HI09IpLZ1MOSsV5ksQuQKZijm5O_0egv8eMPamraPDprEd-iEaUEyrZSYzPk35aeqCjzFgaQ6hbm0YDTBzdGj-HRoN5uRQ_AKBYGfh</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1709768482</pqid></control><display><type>article</type><title>Theoretical study of the dynamics of atomic hydrogen adsorbed on graphene multilayers</title><source>American Physical Society Journals</source><creator>Moaied, Mohammed ; Moreno, J. A. ; Caturla, M. J. ; Ynduráin, Félix ; Palacios, J. J.</creator><creatorcontrib>Moaied, Mohammed ; Moreno, J. A. ; Caturla, M. J. ; Ynduráin, Félix ; Palacios, J. J.</creatorcontrib><description>We present a theoretical study of the dynamics of H atoms adsorbed on graphene bilayers with Bernal stacking. First, through extensive density functional theory calculations, including van der Waals interactions, we obtain the activation barriers involved in the desorption and migration processes of a single H atom. These barriers, along with attempt rates and the energetics of H pairs, are used as input parameters in kinetic Monte Carlo simulations to study the time evolution of an initial random distribution of adsorbed H atoms. The simulations reveal that, at room temperature, H atoms occupy only one sublattice before they completely desorb or form clusters. This sublattice selectivity in the distribution of H atoms may last for sufficiently long periods of time upon lowering the temperature down to 0[degrees]C. The final fate of the H atoms, namely, desorption or cluster formation, depends on the actual relative values of the activation barriers which can be tuned by doping. In some cases, a sublattice selectivity can be obtained for periods of time experimentally relevant even at room temperature. This result shows the possibility for observation and applications of the ferromagnetic state associated with such distribution.</description><identifier>ISSN: 1098-0121</identifier><identifier>EISSN: 1550-235X</identifier><identifier>DOI: 10.1103/PhysRevB.91.155419</identifier><language>eng</language><subject>Activation ; Barriers ; Clusters ; Computer simulation ; Desorption ; Dynamic tests ; Dynamics ; Graphene</subject><ispartof>Physical review. B, Condensed matter and materials physics, 2015-04, Vol.91 (15), Article 155419</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c324t-7abcc34a4690c3c7e830d3d881841a3c0efb73ee25fc794c4520f7eb613b71453</citedby><cites>FETCH-LOGICAL-c324t-7abcc34a4690c3c7e830d3d881841a3c0efb73ee25fc794c4520f7eb613b71453</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,2863,2864,27901,27902</link.rule.ids></links><search><creatorcontrib>Moaied, Mohammed</creatorcontrib><creatorcontrib>Moreno, J. A.</creatorcontrib><creatorcontrib>Caturla, M. J.</creatorcontrib><creatorcontrib>Ynduráin, Félix</creatorcontrib><creatorcontrib>Palacios, J. J.</creatorcontrib><title>Theoretical study of the dynamics of atomic hydrogen adsorbed on graphene multilayers</title><title>Physical review. B, Condensed matter and materials physics</title><description>We present a theoretical study of the dynamics of H atoms adsorbed on graphene bilayers with Bernal stacking. First, through extensive density functional theory calculations, including van der Waals interactions, we obtain the activation barriers involved in the desorption and migration processes of a single H atom. These barriers, along with attempt rates and the energetics of H pairs, are used as input parameters in kinetic Monte Carlo simulations to study the time evolution of an initial random distribution of adsorbed H atoms. The simulations reveal that, at room temperature, H atoms occupy only one sublattice before they completely desorb or form clusters. This sublattice selectivity in the distribution of H atoms may last for sufficiently long periods of time upon lowering the temperature down to 0[degrees]C. The final fate of the H atoms, namely, desorption or cluster formation, depends on the actual relative values of the activation barriers which can be tuned by doping. In some cases, a sublattice selectivity can be obtained for periods of time experimentally relevant even at room temperature. This result shows the possibility for observation and applications of the ferromagnetic state associated with such distribution.</description><subject>Activation</subject><subject>Barriers</subject><subject>Clusters</subject><subject>Computer simulation</subject><subject>Desorption</subject><subject>Dynamic tests</subject><subject>Dynamics</subject><subject>Graphene</subject><issn>1098-0121</issn><issn>1550-235X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><recordid>eNo1kEFLwzAYhoMoOKd_wFOOXjrzJenSHHXoFAaKbOAtpOnXtdI2M2mF_ns7pqf3eeHlPTyE3AJbADBx_16N8QN_HhcaFpCmEvQZmU3AEi7Sz_OJmc4SBhwuyVWMX4yB1JLPyG5boQ_Y1842NPZDMVJf0r5CWoydbWsXj932fkJajUXwe-yoLaIPORbUd3Qf7KHCDmk7NH3d2BFDvCYXpW0i3vzlnOyen7arl2Tztn5dPWwSJ7jsE2Vz54S0cqmZE05hJlghiiyDTIIVjmGZK4HI09IpLZ1MOSsV5ksQuQKZijm5O_0egv8eMPamraPDprEd-iEaUEyrZSYzPk35aeqCjzFgaQ6hbm0YDTBzdGj-HRoN5uRQ_AKBYGfh</recordid><startdate>20150417</startdate><enddate>20150417</enddate><creator>Moaied, Mohammed</creator><creator>Moreno, J. A.</creator><creator>Caturla, M. J.</creator><creator>Ynduráin, Félix</creator><creator>Palacios, J. J.</creator><scope>AAYXX</scope><scope>CITATION</scope><scope>7U5</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope></search><sort><creationdate>20150417</creationdate><title>Theoretical study of the dynamics of atomic hydrogen adsorbed on graphene multilayers</title><author>Moaied, Mohammed ; Moreno, J. A. ; Caturla, M. J. ; Ynduráin, Félix ; Palacios, J. J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c324t-7abcc34a4690c3c7e830d3d881841a3c0efb73ee25fc794c4520f7eb613b71453</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Activation</topic><topic>Barriers</topic><topic>Clusters</topic><topic>Computer simulation</topic><topic>Desorption</topic><topic>Dynamic tests</topic><topic>Dynamics</topic><topic>Graphene</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Moaied, Mohammed</creatorcontrib><creatorcontrib>Moreno, J. A.</creatorcontrib><creatorcontrib>Caturla, M. J.</creatorcontrib><creatorcontrib>Ynduráin, Félix</creatorcontrib><creatorcontrib>Palacios, J. J.</creatorcontrib><collection>CrossRef</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Physical review. B, Condensed matter and materials physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Moaied, Mohammed</au><au>Moreno, J. A.</au><au>Caturla, M. J.</au><au>Ynduráin, Félix</au><au>Palacios, J. J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Theoretical study of the dynamics of atomic hydrogen adsorbed on graphene multilayers</atitle><jtitle>Physical review. B, Condensed matter and materials physics</jtitle><date>2015-04-17</date><risdate>2015</risdate><volume>91</volume><issue>15</issue><artnum>155419</artnum><issn>1098-0121</issn><eissn>1550-235X</eissn><abstract>We present a theoretical study of the dynamics of H atoms adsorbed on graphene bilayers with Bernal stacking. First, through extensive density functional theory calculations, including van der Waals interactions, we obtain the activation barriers involved in the desorption and migration processes of a single H atom. These barriers, along with attempt rates and the energetics of H pairs, are used as input parameters in kinetic Monte Carlo simulations to study the time evolution of an initial random distribution of adsorbed H atoms. The simulations reveal that, at room temperature, H atoms occupy only one sublattice before they completely desorb or form clusters. This sublattice selectivity in the distribution of H atoms may last for sufficiently long periods of time upon lowering the temperature down to 0[degrees]C. The final fate of the H atoms, namely, desorption or cluster formation, depends on the actual relative values of the activation barriers which can be tuned by doping. In some cases, a sublattice selectivity can be obtained for periods of time experimentally relevant even at room temperature. This result shows the possibility for observation and applications of the ferromagnetic state associated with such distribution.</abstract><doi>10.1103/PhysRevB.91.155419</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1098-0121
ispartof Physical review. B, Condensed matter and materials physics, 2015-04, Vol.91 (15), Article 155419
issn 1098-0121
1550-235X
language eng
recordid cdi_proquest_miscellaneous_1709768482
source American Physical Society Journals
subjects Activation
Barriers
Clusters
Computer simulation
Desorption
Dynamic tests
Dynamics
Graphene
title Theoretical study of the dynamics of atomic hydrogen adsorbed on graphene multilayers
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-09T00%3A35%3A09IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Theoretical%20study%20of%20the%20dynamics%20of%20atomic%20hydrogen%20adsorbed%20on%20graphene%20multilayers&rft.jtitle=Physical%20review.%20B,%20Condensed%20matter%20and%20materials%20physics&rft.au=Moaied,%20Mohammed&rft.date=2015-04-17&rft.volume=91&rft.issue=15&rft.artnum=155419&rft.issn=1098-0121&rft.eissn=1550-235X&rft_id=info:doi/10.1103/PhysRevB.91.155419&rft_dat=%3Cproquest_cross%3E1709768482%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1709768482&rft_id=info:pmid/&rfr_iscdi=true