Evaluating credibility of interest reflection on Twitter

Purpose - The purpose of this article was to confirm whether users' interests are reflected by tweeted Web pages, and to evaluate the credibility of interest reflection of tweeted Web pages. Design/methodology/approach - Interest reflection of Twitter is investigated based on the context of sha...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of Web information systems 2014-11, Vol.10 (4), p.343-362
Hauptverfasser: Han, Hao, Nakawatase, Hidekazu, Oyama, Keizo
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 362
container_issue 4
container_start_page 343
container_title International journal of Web information systems
container_volume 10
creator Han, Hao
Nakawatase, Hidekazu
Oyama, Keizo
description Purpose - The purpose of this article was to confirm whether users' interests are reflected by tweeted Web pages, and to evaluate the credibility of interest reflection of tweeted Web pages. Design/methodology/approach - Interest reflection of Twitter is investigated based on the context of sharing behavior. A context-oriented approach is proposed to evaluate the interest reflection of tweeted Web pages based on machine learning. Some different distribution models of similarity are present, and infer whether tweeted Web pages reflect respective users' interests by analyzing user access profiles. Findings - The analysis of browsing behaviors finds that many users partially hide their own concerns, hobbies and interests, and emphasize the concerns about social phenomenon. The extensive experimental results showed the context-oriented approach is effective on real net view data. Originality/value - As the first-of-its-kind study on evaluating the credibility of interest reflection on Twitter, extensive experiments have been conducted on the data sets containing real net view data. For higher accuracy and less subjectivity, various features are generated from user's Web view and Twitter submission background with some different context factors.
doi_str_mv 10.1108/IJWIS-04-2014-0019
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1709767357</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1709766715</sourcerecordid><originalsourceid>FETCH-LOGICAL-c449t-72595d5879794f8d393e2c1e9954d2a4aee91c9d6b8e4bb81e61024ba644385b3</originalsourceid><addsrcrecordid>eNqNkMFKAzEQhoMoWKsv4GnBi5fVTDbZJEcptVYKHqx4DNlsVlK2uzXJKn17s1Y8eBIG5of5GGY-hC4B3wBgcbt8fF0-55jmBAPNMQZ5hCbA6ZglOf7Ngp6isxA2GJeiADlBYv6h20FH171lxtvaVa51cZ_1Tea6aL0NMfO2aa2Jru-yVOtPF9PgHJ00ug324qdP0cv9fD17yFdPi-XsbpUbSmXMOWGS1UxwySVtRF3IwhIDVkpGa6KptlaCkXVZCUurSoAtARNa6ZLSQrCqmKLrw96d79-HdI7aumBs2-rO9kNQwLHkJS8Y_ydacmAJvfqDbvrBd-kRRQCSm5JgkihyoIzvQ0ga1M67rfZ7BViN3tW3d4WpGr2r0XvxBQLMdCY</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2116836202</pqid></control><display><type>article</type><title>Evaluating credibility of interest reflection on Twitter</title><source>Emerald A-Z Current Journals</source><source>Standard: Emerald eJournal Premier Collection</source><creator>Han, Hao ; Nakawatase, Hidekazu ; Oyama, Keizo</creator><contributor>Indrawan-Santiago, Maria</contributor><creatorcontrib>Han, Hao ; Nakawatase, Hidekazu ; Oyama, Keizo ; Indrawan-Santiago, Maria</creatorcontrib><description>Purpose - The purpose of this article was to confirm whether users' interests are reflected by tweeted Web pages, and to evaluate the credibility of interest reflection of tweeted Web pages. Design/methodology/approach - Interest reflection of Twitter is investigated based on the context of sharing behavior. A context-oriented approach is proposed to evaluate the interest reflection of tweeted Web pages based on machine learning. Some different distribution models of similarity are present, and infer whether tweeted Web pages reflect respective users' interests by analyzing user access profiles. Findings - The analysis of browsing behaviors finds that many users partially hide their own concerns, hobbies and interests, and emphasize the concerns about social phenomenon. The extensive experimental results showed the context-oriented approach is effective on real net view data. Originality/value - As the first-of-its-kind study on evaluating the credibility of interest reflection on Twitter, extensive experiments have been conducted on the data sets containing real net view data. For higher accuracy and less subjectivity, various features are generated from user's Web view and Twitter submission background with some different context factors.</description><identifier>ISSN: 1744-0084</identifier><identifier>EISSN: 1744-0092</identifier><identifier>DOI: 10.1108/IJWIS-04-2014-0019</identifier><language>eng</language><publisher>Bingley: Emerald Group Publishing Limited</publisher><subject>Artificial intelligence ; Browsing ; Credibility ; Design engineering ; Information systems ; Machine learning ; Reflection ; Similarity ; Social networks ; Websites ; World Wide Web</subject><ispartof>International journal of Web information systems, 2014-11, Vol.10 (4), p.343-362</ispartof><rights>Emerald Group Publishing Limited 2014</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c449t-72595d5879794f8d393e2c1e9954d2a4aee91c9d6b8e4bb81e61024ba644385b3</citedby><cites>FETCH-LOGICAL-c449t-72595d5879794f8d393e2c1e9954d2a4aee91c9d6b8e4bb81e61024ba644385b3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,967,21695,27924,27925</link.rule.ids></links><search><contributor>Indrawan-Santiago, Maria</contributor><creatorcontrib>Han, Hao</creatorcontrib><creatorcontrib>Nakawatase, Hidekazu</creatorcontrib><creatorcontrib>Oyama, Keizo</creatorcontrib><title>Evaluating credibility of interest reflection on Twitter</title><title>International journal of Web information systems</title><description>Purpose - The purpose of this article was to confirm whether users' interests are reflected by tweeted Web pages, and to evaluate the credibility of interest reflection of tweeted Web pages. Design/methodology/approach - Interest reflection of Twitter is investigated based on the context of sharing behavior. A context-oriented approach is proposed to evaluate the interest reflection of tweeted Web pages based on machine learning. Some different distribution models of similarity are present, and infer whether tweeted Web pages reflect respective users' interests by analyzing user access profiles. Findings - The analysis of browsing behaviors finds that many users partially hide their own concerns, hobbies and interests, and emphasize the concerns about social phenomenon. The extensive experimental results showed the context-oriented approach is effective on real net view data. Originality/value - As the first-of-its-kind study on evaluating the credibility of interest reflection on Twitter, extensive experiments have been conducted on the data sets containing real net view data. For higher accuracy and less subjectivity, various features are generated from user's Web view and Twitter submission background with some different context factors.</description><subject>Artificial intelligence</subject><subject>Browsing</subject><subject>Credibility</subject><subject>Design engineering</subject><subject>Information systems</subject><subject>Machine learning</subject><subject>Reflection</subject><subject>Similarity</subject><subject>Social networks</subject><subject>Websites</subject><subject>World Wide Web</subject><issn>1744-0084</issn><issn>1744-0092</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNqNkMFKAzEQhoMoWKsv4GnBi5fVTDbZJEcptVYKHqx4DNlsVlK2uzXJKn17s1Y8eBIG5of5GGY-hC4B3wBgcbt8fF0-55jmBAPNMQZ5hCbA6ZglOf7Ngp6isxA2GJeiADlBYv6h20FH171lxtvaVa51cZ_1Tea6aL0NMfO2aa2Jru-yVOtPF9PgHJ00ug324qdP0cv9fD17yFdPi-XsbpUbSmXMOWGS1UxwySVtRF3IwhIDVkpGa6KptlaCkXVZCUurSoAtARNa6ZLSQrCqmKLrw96d79-HdI7aumBs2-rO9kNQwLHkJS8Y_ydacmAJvfqDbvrBd-kRRQCSm5JgkihyoIzvQ0ga1M67rfZ7BViN3tW3d4WpGr2r0XvxBQLMdCY</recordid><startdate>20141111</startdate><enddate>20141111</enddate><creator>Han, Hao</creator><creator>Nakawatase, Hidekazu</creator><creator>Oyama, Keizo</creator><general>Emerald Group Publishing Limited</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7XB</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ALSLI</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>CNYFK</scope><scope>DWQXO</scope><scope>E3H</scope><scope>F2A</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M0N</scope><scope>M1O</scope><scope>P5Z</scope><scope>P62</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope></search><sort><creationdate>20141111</creationdate><title>Evaluating credibility of interest reflection on Twitter</title><author>Han, Hao ; Nakawatase, Hidekazu ; Oyama, Keizo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c449t-72595d5879794f8d393e2c1e9954d2a4aee91c9d6b8e4bb81e61024ba644385b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Artificial intelligence</topic><topic>Browsing</topic><topic>Credibility</topic><topic>Design engineering</topic><topic>Information systems</topic><topic>Machine learning</topic><topic>Reflection</topic><topic>Similarity</topic><topic>Social networks</topic><topic>Websites</topic><topic>World Wide Web</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Han, Hao</creatorcontrib><creatorcontrib>Nakawatase, Hidekazu</creatorcontrib><creatorcontrib>Oyama, Keizo</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Social Science Premium Collection</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>Library &amp; Information Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Library &amp; Information Sciences Abstracts (LISA)</collection><collection>Library &amp; Information Science Abstracts (LISA)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Computing Database</collection><collection>Library Science Database</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><jtitle>International journal of Web information systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Han, Hao</au><au>Nakawatase, Hidekazu</au><au>Oyama, Keizo</au><au>Indrawan-Santiago, Maria</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Evaluating credibility of interest reflection on Twitter</atitle><jtitle>International journal of Web information systems</jtitle><date>2014-11-11</date><risdate>2014</risdate><volume>10</volume><issue>4</issue><spage>343</spage><epage>362</epage><pages>343-362</pages><issn>1744-0084</issn><eissn>1744-0092</eissn><abstract>Purpose - The purpose of this article was to confirm whether users' interests are reflected by tweeted Web pages, and to evaluate the credibility of interest reflection of tweeted Web pages. Design/methodology/approach - Interest reflection of Twitter is investigated based on the context of sharing behavior. A context-oriented approach is proposed to evaluate the interest reflection of tweeted Web pages based on machine learning. Some different distribution models of similarity are present, and infer whether tweeted Web pages reflect respective users' interests by analyzing user access profiles. Findings - The analysis of browsing behaviors finds that many users partially hide their own concerns, hobbies and interests, and emphasize the concerns about social phenomenon. The extensive experimental results showed the context-oriented approach is effective on real net view data. Originality/value - As the first-of-its-kind study on evaluating the credibility of interest reflection on Twitter, extensive experiments have been conducted on the data sets containing real net view data. For higher accuracy and less subjectivity, various features are generated from user's Web view and Twitter submission background with some different context factors.</abstract><cop>Bingley</cop><pub>Emerald Group Publishing Limited</pub><doi>10.1108/IJWIS-04-2014-0019</doi><tpages>20</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1744-0084
ispartof International journal of Web information systems, 2014-11, Vol.10 (4), p.343-362
issn 1744-0084
1744-0092
language eng
recordid cdi_proquest_miscellaneous_1709767357
source Emerald A-Z Current Journals; Standard: Emerald eJournal Premier Collection
subjects Artificial intelligence
Browsing
Credibility
Design engineering
Information systems
Machine learning
Reflection
Similarity
Social networks
Websites
World Wide Web
title Evaluating credibility of interest reflection on Twitter
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-19T12%3A53%3A16IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Evaluating%20credibility%20of%20interest%20reflection%20on%20Twitter&rft.jtitle=International%20journal%20of%20Web%20information%20systems&rft.au=Han,%20Hao&rft.date=2014-11-11&rft.volume=10&rft.issue=4&rft.spage=343&rft.epage=362&rft.pages=343-362&rft.issn=1744-0084&rft.eissn=1744-0092&rft_id=info:doi/10.1108/IJWIS-04-2014-0019&rft_dat=%3Cproquest_cross%3E1709766715%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2116836202&rft_id=info:pmid/&rfr_iscdi=true