Evaluating credibility of interest reflection on Twitter
Purpose - The purpose of this article was to confirm whether users' interests are reflected by tweeted Web pages, and to evaluate the credibility of interest reflection of tweeted Web pages. Design/methodology/approach - Interest reflection of Twitter is investigated based on the context of sha...
Gespeichert in:
Veröffentlicht in: | International journal of Web information systems 2014-11, Vol.10 (4), p.343-362 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 362 |
---|---|
container_issue | 4 |
container_start_page | 343 |
container_title | International journal of Web information systems |
container_volume | 10 |
creator | Han, Hao Nakawatase, Hidekazu Oyama, Keizo |
description | Purpose - The purpose of this article was to confirm whether users' interests are reflected by tweeted Web pages, and to evaluate the credibility of interest reflection of tweeted Web pages. Design/methodology/approach - Interest reflection of Twitter is investigated based on the context of sharing behavior. A context-oriented approach is proposed to evaluate the interest reflection of tweeted Web pages based on machine learning. Some different distribution models of similarity are present, and infer whether tweeted Web pages reflect respective users' interests by analyzing user access profiles. Findings - The analysis of browsing behaviors finds that many users partially hide their own concerns, hobbies and interests, and emphasize the concerns about social phenomenon. The extensive experimental results showed the context-oriented approach is effective on real net view data. Originality/value - As the first-of-its-kind study on evaluating the credibility of interest reflection on Twitter, extensive experiments have been conducted on the data sets containing real net view data. For higher accuracy and less subjectivity, various features are generated from user's Web view and Twitter submission background with some different context factors. |
doi_str_mv | 10.1108/IJWIS-04-2014-0019 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1709767357</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1709766715</sourcerecordid><originalsourceid>FETCH-LOGICAL-c449t-72595d5879794f8d393e2c1e9954d2a4aee91c9d6b8e4bb81e61024ba644385b3</originalsourceid><addsrcrecordid>eNqNkMFKAzEQhoMoWKsv4GnBi5fVTDbZJEcptVYKHqx4DNlsVlK2uzXJKn17s1Y8eBIG5of5GGY-hC4B3wBgcbt8fF0-55jmBAPNMQZ5hCbA6ZglOf7Ngp6isxA2GJeiADlBYv6h20FH171lxtvaVa51cZ_1Tea6aL0NMfO2aa2Jru-yVOtPF9PgHJ00ug324qdP0cv9fD17yFdPi-XsbpUbSmXMOWGS1UxwySVtRF3IwhIDVkpGa6KptlaCkXVZCUurSoAtARNa6ZLSQrCqmKLrw96d79-HdI7aumBs2-rO9kNQwLHkJS8Y_ydacmAJvfqDbvrBd-kRRQCSm5JgkihyoIzvQ0ga1M67rfZ7BViN3tW3d4WpGr2r0XvxBQLMdCY</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2116836202</pqid></control><display><type>article</type><title>Evaluating credibility of interest reflection on Twitter</title><source>Emerald A-Z Current Journals</source><source>Standard: Emerald eJournal Premier Collection</source><creator>Han, Hao ; Nakawatase, Hidekazu ; Oyama, Keizo</creator><contributor>Indrawan-Santiago, Maria</contributor><creatorcontrib>Han, Hao ; Nakawatase, Hidekazu ; Oyama, Keizo ; Indrawan-Santiago, Maria</creatorcontrib><description>Purpose - The purpose of this article was to confirm whether users' interests are reflected by tweeted Web pages, and to evaluate the credibility of interest reflection of tweeted Web pages. Design/methodology/approach - Interest reflection of Twitter is investigated based on the context of sharing behavior. A context-oriented approach is proposed to evaluate the interest reflection of tweeted Web pages based on machine learning. Some different distribution models of similarity are present, and infer whether tweeted Web pages reflect respective users' interests by analyzing user access profiles. Findings - The analysis of browsing behaviors finds that many users partially hide their own concerns, hobbies and interests, and emphasize the concerns about social phenomenon. The extensive experimental results showed the context-oriented approach is effective on real net view data. Originality/value - As the first-of-its-kind study on evaluating the credibility of interest reflection on Twitter, extensive experiments have been conducted on the data sets containing real net view data. For higher accuracy and less subjectivity, various features are generated from user's Web view and Twitter submission background with some different context factors.</description><identifier>ISSN: 1744-0084</identifier><identifier>EISSN: 1744-0092</identifier><identifier>DOI: 10.1108/IJWIS-04-2014-0019</identifier><language>eng</language><publisher>Bingley: Emerald Group Publishing Limited</publisher><subject>Artificial intelligence ; Browsing ; Credibility ; Design engineering ; Information systems ; Machine learning ; Reflection ; Similarity ; Social networks ; Websites ; World Wide Web</subject><ispartof>International journal of Web information systems, 2014-11, Vol.10 (4), p.343-362</ispartof><rights>Emerald Group Publishing Limited 2014</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c449t-72595d5879794f8d393e2c1e9954d2a4aee91c9d6b8e4bb81e61024ba644385b3</citedby><cites>FETCH-LOGICAL-c449t-72595d5879794f8d393e2c1e9954d2a4aee91c9d6b8e4bb81e61024ba644385b3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,967,21695,27924,27925</link.rule.ids></links><search><contributor>Indrawan-Santiago, Maria</contributor><creatorcontrib>Han, Hao</creatorcontrib><creatorcontrib>Nakawatase, Hidekazu</creatorcontrib><creatorcontrib>Oyama, Keizo</creatorcontrib><title>Evaluating credibility of interest reflection on Twitter</title><title>International journal of Web information systems</title><description>Purpose - The purpose of this article was to confirm whether users' interests are reflected by tweeted Web pages, and to evaluate the credibility of interest reflection of tweeted Web pages. Design/methodology/approach - Interest reflection of Twitter is investigated based on the context of sharing behavior. A context-oriented approach is proposed to evaluate the interest reflection of tweeted Web pages based on machine learning. Some different distribution models of similarity are present, and infer whether tweeted Web pages reflect respective users' interests by analyzing user access profiles. Findings - The analysis of browsing behaviors finds that many users partially hide their own concerns, hobbies and interests, and emphasize the concerns about social phenomenon. The extensive experimental results showed the context-oriented approach is effective on real net view data. Originality/value - As the first-of-its-kind study on evaluating the credibility of interest reflection on Twitter, extensive experiments have been conducted on the data sets containing real net view data. For higher accuracy and less subjectivity, various features are generated from user's Web view and Twitter submission background with some different context factors.</description><subject>Artificial intelligence</subject><subject>Browsing</subject><subject>Credibility</subject><subject>Design engineering</subject><subject>Information systems</subject><subject>Machine learning</subject><subject>Reflection</subject><subject>Similarity</subject><subject>Social networks</subject><subject>Websites</subject><subject>World Wide Web</subject><issn>1744-0084</issn><issn>1744-0092</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNqNkMFKAzEQhoMoWKsv4GnBi5fVTDbZJEcptVYKHqx4DNlsVlK2uzXJKn17s1Y8eBIG5of5GGY-hC4B3wBgcbt8fF0-55jmBAPNMQZ5hCbA6ZglOf7Ngp6isxA2GJeiADlBYv6h20FH171lxtvaVa51cZ_1Tea6aL0NMfO2aa2Jru-yVOtPF9PgHJ00ug324qdP0cv9fD17yFdPi-XsbpUbSmXMOWGS1UxwySVtRF3IwhIDVkpGa6KptlaCkXVZCUurSoAtARNa6ZLSQrCqmKLrw96d79-HdI7aumBs2-rO9kNQwLHkJS8Y_ydacmAJvfqDbvrBd-kRRQCSm5JgkihyoIzvQ0ga1M67rfZ7BViN3tW3d4WpGr2r0XvxBQLMdCY</recordid><startdate>20141111</startdate><enddate>20141111</enddate><creator>Han, Hao</creator><creator>Nakawatase, Hidekazu</creator><creator>Oyama, Keizo</creator><general>Emerald Group Publishing Limited</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7XB</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ALSLI</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>CNYFK</scope><scope>DWQXO</scope><scope>E3H</scope><scope>F2A</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M0N</scope><scope>M1O</scope><scope>P5Z</scope><scope>P62</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope></search><sort><creationdate>20141111</creationdate><title>Evaluating credibility of interest reflection on Twitter</title><author>Han, Hao ; Nakawatase, Hidekazu ; Oyama, Keizo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c449t-72595d5879794f8d393e2c1e9954d2a4aee91c9d6b8e4bb81e61024ba644385b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Artificial intelligence</topic><topic>Browsing</topic><topic>Credibility</topic><topic>Design engineering</topic><topic>Information systems</topic><topic>Machine learning</topic><topic>Reflection</topic><topic>Similarity</topic><topic>Social networks</topic><topic>Websites</topic><topic>World Wide Web</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Han, Hao</creatorcontrib><creatorcontrib>Nakawatase, Hidekazu</creatorcontrib><creatorcontrib>Oyama, Keizo</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Social Science Premium Collection</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>Library & Information Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Library & Information Sciences Abstracts (LISA)</collection><collection>Library & Information Science Abstracts (LISA)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Computing Database</collection><collection>Library Science Database</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><jtitle>International journal of Web information systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Han, Hao</au><au>Nakawatase, Hidekazu</au><au>Oyama, Keizo</au><au>Indrawan-Santiago, Maria</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Evaluating credibility of interest reflection on Twitter</atitle><jtitle>International journal of Web information systems</jtitle><date>2014-11-11</date><risdate>2014</risdate><volume>10</volume><issue>4</issue><spage>343</spage><epage>362</epage><pages>343-362</pages><issn>1744-0084</issn><eissn>1744-0092</eissn><abstract>Purpose - The purpose of this article was to confirm whether users' interests are reflected by tweeted Web pages, and to evaluate the credibility of interest reflection of tweeted Web pages. Design/methodology/approach - Interest reflection of Twitter is investigated based on the context of sharing behavior. A context-oriented approach is proposed to evaluate the interest reflection of tweeted Web pages based on machine learning. Some different distribution models of similarity are present, and infer whether tweeted Web pages reflect respective users' interests by analyzing user access profiles. Findings - The analysis of browsing behaviors finds that many users partially hide their own concerns, hobbies and interests, and emphasize the concerns about social phenomenon. The extensive experimental results showed the context-oriented approach is effective on real net view data. Originality/value - As the first-of-its-kind study on evaluating the credibility of interest reflection on Twitter, extensive experiments have been conducted on the data sets containing real net view data. For higher accuracy and less subjectivity, various features are generated from user's Web view and Twitter submission background with some different context factors.</abstract><cop>Bingley</cop><pub>Emerald Group Publishing Limited</pub><doi>10.1108/IJWIS-04-2014-0019</doi><tpages>20</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1744-0084 |
ispartof | International journal of Web information systems, 2014-11, Vol.10 (4), p.343-362 |
issn | 1744-0084 1744-0092 |
language | eng |
recordid | cdi_proquest_miscellaneous_1709767357 |
source | Emerald A-Z Current Journals; Standard: Emerald eJournal Premier Collection |
subjects | Artificial intelligence Browsing Credibility Design engineering Information systems Machine learning Reflection Similarity Social networks Websites World Wide Web |
title | Evaluating credibility of interest reflection on Twitter |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-19T12%3A53%3A16IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Evaluating%20credibility%20of%20interest%20reflection%20on%20Twitter&rft.jtitle=International%20journal%20of%20Web%20information%20systems&rft.au=Han,%20Hao&rft.date=2014-11-11&rft.volume=10&rft.issue=4&rft.spage=343&rft.epage=362&rft.pages=343-362&rft.issn=1744-0084&rft.eissn=1744-0092&rft_id=info:doi/10.1108/IJWIS-04-2014-0019&rft_dat=%3Cproquest_cross%3E1709766715%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2116836202&rft_id=info:pmid/&rfr_iscdi=true |