A fourth order modified trigonometrically fitted symplectic Runge–Kutta–Nyström method

In this work we construct a modified trigonometrically fitted symplectic Runge Kutta Nyström method based on the fourth order five stages method of Calvo and Sanz-Serna (1994). We apply the new method on the numerical integration of the two-dimensional harmonic oscillator, the two-body problem, a pe...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Computer physics communications 2014-12, Vol.185 (12), p.3151-3155
Hauptverfasser: Kalogiratou, Z., Monovasilis, Th, Simos, T.E.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 3155
container_issue 12
container_start_page 3151
container_title Computer physics communications
container_volume 185
creator Kalogiratou, Z.
Monovasilis, Th
Simos, T.E.
description In this work we construct a modified trigonometrically fitted symplectic Runge Kutta Nyström method based on the fourth order five stages method of Calvo and Sanz-Serna (1994). We apply the new method on the numerical integration of the two-dimensional harmonic oscillator, the two-body problem, a perturbed two-body problem and two two-dimensional nonlinear oscillatory Hamiltonian systems.
doi_str_mv 10.1016/j.cpc.2014.08.013
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1709766584</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0010465514002914</els_id><sourcerecordid>1709766584</sourcerecordid><originalsourceid>FETCH-LOGICAL-c330t-33ad45365c803d59face674445175bb1b7a194f51f446fe0715d4de5187da5cc3</originalsourceid><addsrcrecordid>eNp9kEFOHDEQRS0UJCbAAdj1MpvulLHd7lZWo1FCECiREKxYWB67DB51jye2O1LvuAN34QLchJNgNFln9Uuq_0qqR8gZhYYCbb9uGrMzzTlQ3kDXAGUHZEE72dfnPeefyAKAQs1bIY7I55Q2ACBlzxbkflm5MMX8WIVoMVZjsN55tFWO_iFsw4hlMHoY5sr5nMsizeNuQJO9qW6m7QO-PT1fTTnrkr_mlOPry1gV6jHYE3Lo9JDw9F8ek7sf329XP-vr3xeXq-V1bRiDXDOmLResFaYDZkXvtMFWcs4FlWK9pmupac-doI7z1iFIKiy3KMp7Vgtj2DH5sr-7i-HPhCmr0SeDw6C3GKakqIRetq3oeKnSfdXEkFJEp3bRjzrOioL6EKk2qohUHyIVdKqILMy3PYPlh78eo0rG49ag9bF4UDb4_9Dvpp5_Xw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1709766584</pqid></control><display><type>article</type><title>A fourth order modified trigonometrically fitted symplectic Runge–Kutta–Nyström method</title><source>Access via ScienceDirect (Elsevier)</source><creator>Kalogiratou, Z. ; Monovasilis, Th ; Simos, T.E.</creator><creatorcontrib>Kalogiratou, Z. ; Monovasilis, Th ; Simos, T.E.</creatorcontrib><description>In this work we construct a modified trigonometrically fitted symplectic Runge Kutta Nyström method based on the fourth order five stages method of Calvo and Sanz-Serna (1994). We apply the new method on the numerical integration of the two-dimensional harmonic oscillator, the two-body problem, a perturbed two-body problem and two two-dimensional nonlinear oscillatory Hamiltonian systems.</description><identifier>ISSN: 0010-4655</identifier><identifier>EISSN: 1879-2944</identifier><identifier>DOI: 10.1016/j.cpc.2014.08.013</identifier><language>eng</language><publisher>Elsevier B.V</publisher><subject>Computer simulation ; Construction ; Exponential fitting ; Hamiltonian systems ; Harmonic oscillators ; Mathematical models ; Nonlinearity ; Numerical integration ; Runge Kutta Nyström methods ; Runge-Kutta method ; Symplectic methods ; Two dimensional</subject><ispartof>Computer physics communications, 2014-12, Vol.185 (12), p.3151-3155</ispartof><rights>2014 Elsevier B.V.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c330t-33ad45365c803d59face674445175bb1b7a194f51f446fe0715d4de5187da5cc3</citedby><cites>FETCH-LOGICAL-c330t-33ad45365c803d59face674445175bb1b7a194f51f446fe0715d4de5187da5cc3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.cpc.2014.08.013$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids></links><search><creatorcontrib>Kalogiratou, Z.</creatorcontrib><creatorcontrib>Monovasilis, Th</creatorcontrib><creatorcontrib>Simos, T.E.</creatorcontrib><title>A fourth order modified trigonometrically fitted symplectic Runge–Kutta–Nyström method</title><title>Computer physics communications</title><description>In this work we construct a modified trigonometrically fitted symplectic Runge Kutta Nyström method based on the fourth order five stages method of Calvo and Sanz-Serna (1994). We apply the new method on the numerical integration of the two-dimensional harmonic oscillator, the two-body problem, a perturbed two-body problem and two two-dimensional nonlinear oscillatory Hamiltonian systems.</description><subject>Computer simulation</subject><subject>Construction</subject><subject>Exponential fitting</subject><subject>Hamiltonian systems</subject><subject>Harmonic oscillators</subject><subject>Mathematical models</subject><subject>Nonlinearity</subject><subject>Numerical integration</subject><subject>Runge Kutta Nyström methods</subject><subject>Runge-Kutta method</subject><subject>Symplectic methods</subject><subject>Two dimensional</subject><issn>0010-4655</issn><issn>1879-2944</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><recordid>eNp9kEFOHDEQRS0UJCbAAdj1MpvulLHd7lZWo1FCECiREKxYWB67DB51jye2O1LvuAN34QLchJNgNFln9Uuq_0qqR8gZhYYCbb9uGrMzzTlQ3kDXAGUHZEE72dfnPeefyAKAQs1bIY7I55Q2ACBlzxbkflm5MMX8WIVoMVZjsN55tFWO_iFsw4hlMHoY5sr5nMsizeNuQJO9qW6m7QO-PT1fTTnrkr_mlOPry1gV6jHYE3Lo9JDw9F8ek7sf329XP-vr3xeXq-V1bRiDXDOmLResFaYDZkXvtMFWcs4FlWK9pmupac-doI7z1iFIKiy3KMp7Vgtj2DH5sr-7i-HPhCmr0SeDw6C3GKakqIRetq3oeKnSfdXEkFJEp3bRjzrOioL6EKk2qohUHyIVdKqILMy3PYPlh78eo0rG49ag9bF4UDb4_9Dvpp5_Xw</recordid><startdate>201412</startdate><enddate>201412</enddate><creator>Kalogiratou, Z.</creator><creator>Monovasilis, Th</creator><creator>Simos, T.E.</creator><general>Elsevier B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7U5</scope><scope>8FD</scope><scope>H8D</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>201412</creationdate><title>A fourth order modified trigonometrically fitted symplectic Runge–Kutta–Nyström method</title><author>Kalogiratou, Z. ; Monovasilis, Th ; Simos, T.E.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c330t-33ad45365c803d59face674445175bb1b7a194f51f446fe0715d4de5187da5cc3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Computer simulation</topic><topic>Construction</topic><topic>Exponential fitting</topic><topic>Hamiltonian systems</topic><topic>Harmonic oscillators</topic><topic>Mathematical models</topic><topic>Nonlinearity</topic><topic>Numerical integration</topic><topic>Runge Kutta Nyström methods</topic><topic>Runge-Kutta method</topic><topic>Symplectic methods</topic><topic>Two dimensional</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kalogiratou, Z.</creatorcontrib><creatorcontrib>Monovasilis, Th</creatorcontrib><creatorcontrib>Simos, T.E.</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Computer physics communications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kalogiratou, Z.</au><au>Monovasilis, Th</au><au>Simos, T.E.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A fourth order modified trigonometrically fitted symplectic Runge–Kutta–Nyström method</atitle><jtitle>Computer physics communications</jtitle><date>2014-12</date><risdate>2014</risdate><volume>185</volume><issue>12</issue><spage>3151</spage><epage>3155</epage><pages>3151-3155</pages><issn>0010-4655</issn><eissn>1879-2944</eissn><abstract>In this work we construct a modified trigonometrically fitted symplectic Runge Kutta Nyström method based on the fourth order five stages method of Calvo and Sanz-Serna (1994). We apply the new method on the numerical integration of the two-dimensional harmonic oscillator, the two-body problem, a perturbed two-body problem and two two-dimensional nonlinear oscillatory Hamiltonian systems.</abstract><pub>Elsevier B.V</pub><doi>10.1016/j.cpc.2014.08.013</doi><tpages>5</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0010-4655
ispartof Computer physics communications, 2014-12, Vol.185 (12), p.3151-3155
issn 0010-4655
1879-2944
language eng
recordid cdi_proquest_miscellaneous_1709766584
source Access via ScienceDirect (Elsevier)
subjects Computer simulation
Construction
Exponential fitting
Hamiltonian systems
Harmonic oscillators
Mathematical models
Nonlinearity
Numerical integration
Runge Kutta Nyström methods
Runge-Kutta method
Symplectic methods
Two dimensional
title A fourth order modified trigonometrically fitted symplectic Runge–Kutta–Nyström method
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T02%3A25%3A14IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20fourth%20order%20modified%20trigonometrically%20fitted%20symplectic%20Runge%E2%80%93Kutta%E2%80%93Nystr%C3%B6m%20method&rft.jtitle=Computer%20physics%20communications&rft.au=Kalogiratou,%20Z.&rft.date=2014-12&rft.volume=185&rft.issue=12&rft.spage=3151&rft.epage=3155&rft.pages=3151-3155&rft.issn=0010-4655&rft.eissn=1879-2944&rft_id=info:doi/10.1016/j.cpc.2014.08.013&rft_dat=%3Cproquest_cross%3E1709766584%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1709766584&rft_id=info:pmid/&rft_els_id=S0010465514002914&rfr_iscdi=true