The Effects of Embedded Dipoles in Aromatic Self-Assembled Monolayers
Using a representative model system, here electronic and structural properties of aromatic self‐assembled monolayers (SAMs) are described that contain an embedded, dipolar group. As polar unit, pyrimidine is used, with its orientation in the molecular backbone and, consequently, the direction of the...
Gespeichert in:
Veröffentlicht in: | Advanced functional materials 2015-07, Vol.25 (25), p.3943-3957 |
---|---|
Hauptverfasser: | , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 3957 |
---|---|
container_issue | 25 |
container_start_page | 3943 |
container_title | Advanced functional materials |
container_volume | 25 |
creator | Abu-Husein, Tarek Schuster, Swen Egger, David A. Kind, Martin Santowski, Tobias Wiesner, Adrian Chiechi, Ryan Zojer, Egbert Terfort, Andreas Zharnikov, Michael |
description | Using a representative model system, here electronic and structural properties of aromatic self‐assembled monolayers (SAMs) are described that contain an embedded, dipolar group. As polar unit, pyrimidine is used, with its orientation in the molecular backbone and, consequently, the direction of the embedded dipole moment being varied. The electronic and structural properties of these embedded‐dipole SAMs are thoroughly analyzed using a number of complementary characterization techniques combined with quantum‐mechanical modeling. It is shown that such mid‐chain‐substituted monolayers are highly interesting from both fundamental and application viewpoints, as the dipolar groups are found to induce a potential discontinuity inside the monolayer, electrostatically shifting the core‐level energies in the regions above and below the dipoles relative to one another. These SAMs also allow for tuning the substrate work function in a controlled manner independent of the docking chemistry and, most importantly, without modifying the SAM‐ambient interface.
A highly promising approach for changing charge‐injection barriers at the nanoscale through conjugated self‐assembled monolayers (SAMs) is described. This—in sharp contrast to the typically pursued tail‐group substitution—is realized without affecting the SAM‐ambient interface. The goal is achieved by embedding dipolar groups at varying orientation in the SAM‐forming molecules. |
doi_str_mv | 10.1002/adfm.201500899 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1709765586</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1709765586</sourcerecordid><originalsourceid>FETCH-LOGICAL-c6069-f980e79be62197acc3ae800b05db32038d68c6f9fe27ce1dc4969dca920c85153</originalsourceid><addsrcrecordid>eNqFkMFPwjAUhxujiYhePe_oZfi6sXY9ThhoApoIRm5N173G6UaxHVH-eyEzxJun9w7f9zt8hFxTGFCA6FaVphlEQBOAVIgT0qOMsjCGKD09_nR1Ti68fwegnMfDHsmXbxjkxqBufWBNkDcFliWWwbja2Bp9UK2DzNlGtZUOFlibMPMem6LeI3O7trXaofOX5Myo2uPV7-2Tl0m-HN2Hs6fpwyibhZoBE6ERKSAXBbKICq60jhWmAAUkZRFHEKclSzUzwmDENdJSDwUTpVYiAp0mNIn75Kbb3Tj7uUXfyqbyGutardFuvaQcBGdJkrI9OuhQ7az3Do3cuKpRbicpyEMveeglj732guiEr6rG3T-0zMaT-V837NzKt_h9dJX7kIzHPJGvj1PJF-PR3Yw_y1X8A4uGfXg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1709765586</pqid></control><display><type>article</type><title>The Effects of Embedded Dipoles in Aromatic Self-Assembled Monolayers</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Abu-Husein, Tarek ; Schuster, Swen ; Egger, David A. ; Kind, Martin ; Santowski, Tobias ; Wiesner, Adrian ; Chiechi, Ryan ; Zojer, Egbert ; Terfort, Andreas ; Zharnikov, Michael</creator><creatorcontrib>Abu-Husein, Tarek ; Schuster, Swen ; Egger, David A. ; Kind, Martin ; Santowski, Tobias ; Wiesner, Adrian ; Chiechi, Ryan ; Zojer, Egbert ; Terfort, Andreas ; Zharnikov, Michael</creatorcontrib><description>Using a representative model system, here electronic and structural properties of aromatic self‐assembled monolayers (SAMs) are described that contain an embedded, dipolar group. As polar unit, pyrimidine is used, with its orientation in the molecular backbone and, consequently, the direction of the embedded dipole moment being varied. The electronic and structural properties of these embedded‐dipole SAMs are thoroughly analyzed using a number of complementary characterization techniques combined with quantum‐mechanical modeling. It is shown that such mid‐chain‐substituted monolayers are highly interesting from both fundamental and application viewpoints, as the dipolar groups are found to induce a potential discontinuity inside the monolayer, electrostatically shifting the core‐level energies in the regions above and below the dipoles relative to one another. These SAMs also allow for tuning the substrate work function in a controlled manner independent of the docking chemistry and, most importantly, without modifying the SAM‐ambient interface.
A highly promising approach for changing charge‐injection barriers at the nanoscale through conjugated self‐assembled monolayers (SAMs) is described. This—in sharp contrast to the typically pursued tail‐group substitution—is realized without affecting the SAM‐ambient interface. The goal is achieved by embedding dipolar groups at varying orientation in the SAM‐forming molecules.</description><identifier>ISSN: 1616-301X</identifier><identifier>EISSN: 1616-3028</identifier><identifier>DOI: 10.1002/adfm.201500899</identifier><language>eng</language><publisher>Blackwell Publishing Ltd</publisher><subject>Dipoles ; Electronics ; Embedded structures ; interface control ; Mathematical models ; molecular dipole ; Monolayers ; Orientation ; Self-assembled monolayers ; Tuning ; work function</subject><ispartof>Advanced functional materials, 2015-07, Vol.25 (25), p.3943-3957</ispartof><rights>2015 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c6069-f980e79be62197acc3ae800b05db32038d68c6f9fe27ce1dc4969dca920c85153</citedby><cites>FETCH-LOGICAL-c6069-f980e79be62197acc3ae800b05db32038d68c6f9fe27ce1dc4969dca920c85153</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fadfm.201500899$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fadfm.201500899$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids></links><search><creatorcontrib>Abu-Husein, Tarek</creatorcontrib><creatorcontrib>Schuster, Swen</creatorcontrib><creatorcontrib>Egger, David A.</creatorcontrib><creatorcontrib>Kind, Martin</creatorcontrib><creatorcontrib>Santowski, Tobias</creatorcontrib><creatorcontrib>Wiesner, Adrian</creatorcontrib><creatorcontrib>Chiechi, Ryan</creatorcontrib><creatorcontrib>Zojer, Egbert</creatorcontrib><creatorcontrib>Terfort, Andreas</creatorcontrib><creatorcontrib>Zharnikov, Michael</creatorcontrib><title>The Effects of Embedded Dipoles in Aromatic Self-Assembled Monolayers</title><title>Advanced functional materials</title><addtitle>Adv. Funct. Mater</addtitle><description>Using a representative model system, here electronic and structural properties of aromatic self‐assembled monolayers (SAMs) are described that contain an embedded, dipolar group. As polar unit, pyrimidine is used, with its orientation in the molecular backbone and, consequently, the direction of the embedded dipole moment being varied. The electronic and structural properties of these embedded‐dipole SAMs are thoroughly analyzed using a number of complementary characterization techniques combined with quantum‐mechanical modeling. It is shown that such mid‐chain‐substituted monolayers are highly interesting from both fundamental and application viewpoints, as the dipolar groups are found to induce a potential discontinuity inside the monolayer, electrostatically shifting the core‐level energies in the regions above and below the dipoles relative to one another. These SAMs also allow for tuning the substrate work function in a controlled manner independent of the docking chemistry and, most importantly, without modifying the SAM‐ambient interface.
A highly promising approach for changing charge‐injection barriers at the nanoscale through conjugated self‐assembled monolayers (SAMs) is described. This—in sharp contrast to the typically pursued tail‐group substitution—is realized without affecting the SAM‐ambient interface. The goal is achieved by embedding dipolar groups at varying orientation in the SAM‐forming molecules.</description><subject>Dipoles</subject><subject>Electronics</subject><subject>Embedded structures</subject><subject>interface control</subject><subject>Mathematical models</subject><subject>molecular dipole</subject><subject>Monolayers</subject><subject>Orientation</subject><subject>Self-assembled monolayers</subject><subject>Tuning</subject><subject>work function</subject><issn>1616-301X</issn><issn>1616-3028</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><recordid>eNqFkMFPwjAUhxujiYhePe_oZfi6sXY9ThhoApoIRm5N173G6UaxHVH-eyEzxJun9w7f9zt8hFxTGFCA6FaVphlEQBOAVIgT0qOMsjCGKD09_nR1Ti68fwegnMfDHsmXbxjkxqBufWBNkDcFliWWwbja2Bp9UK2DzNlGtZUOFlibMPMem6LeI3O7trXaofOX5Myo2uPV7-2Tl0m-HN2Hs6fpwyibhZoBE6ERKSAXBbKICq60jhWmAAUkZRFHEKclSzUzwmDENdJSDwUTpVYiAp0mNIn75Kbb3Tj7uUXfyqbyGutardFuvaQcBGdJkrI9OuhQ7az3Do3cuKpRbicpyEMveeglj732guiEr6rG3T-0zMaT-V837NzKt_h9dJX7kIzHPJGvj1PJF-PR3Yw_y1X8A4uGfXg</recordid><startdate>20150701</startdate><enddate>20150701</enddate><creator>Abu-Husein, Tarek</creator><creator>Schuster, Swen</creator><creator>Egger, David A.</creator><creator>Kind, Martin</creator><creator>Santowski, Tobias</creator><creator>Wiesner, Adrian</creator><creator>Chiechi, Ryan</creator><creator>Zojer, Egbert</creator><creator>Terfort, Andreas</creator><creator>Zharnikov, Michael</creator><general>Blackwell Publishing Ltd</general><scope>BSCLL</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope></search><sort><creationdate>20150701</creationdate><title>The Effects of Embedded Dipoles in Aromatic Self-Assembled Monolayers</title><author>Abu-Husein, Tarek ; Schuster, Swen ; Egger, David A. ; Kind, Martin ; Santowski, Tobias ; Wiesner, Adrian ; Chiechi, Ryan ; Zojer, Egbert ; Terfort, Andreas ; Zharnikov, Michael</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c6069-f980e79be62197acc3ae800b05db32038d68c6f9fe27ce1dc4969dca920c85153</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Dipoles</topic><topic>Electronics</topic><topic>Embedded structures</topic><topic>interface control</topic><topic>Mathematical models</topic><topic>molecular dipole</topic><topic>Monolayers</topic><topic>Orientation</topic><topic>Self-assembled monolayers</topic><topic>Tuning</topic><topic>work function</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Abu-Husein, Tarek</creatorcontrib><creatorcontrib>Schuster, Swen</creatorcontrib><creatorcontrib>Egger, David A.</creatorcontrib><creatorcontrib>Kind, Martin</creatorcontrib><creatorcontrib>Santowski, Tobias</creatorcontrib><creatorcontrib>Wiesner, Adrian</creatorcontrib><creatorcontrib>Chiechi, Ryan</creatorcontrib><creatorcontrib>Zojer, Egbert</creatorcontrib><creatorcontrib>Terfort, Andreas</creatorcontrib><creatorcontrib>Zharnikov, Michael</creatorcontrib><collection>Istex</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Advanced functional materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Abu-Husein, Tarek</au><au>Schuster, Swen</au><au>Egger, David A.</au><au>Kind, Martin</au><au>Santowski, Tobias</au><au>Wiesner, Adrian</au><au>Chiechi, Ryan</au><au>Zojer, Egbert</au><au>Terfort, Andreas</au><au>Zharnikov, Michael</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The Effects of Embedded Dipoles in Aromatic Self-Assembled Monolayers</atitle><jtitle>Advanced functional materials</jtitle><addtitle>Adv. Funct. Mater</addtitle><date>2015-07-01</date><risdate>2015</risdate><volume>25</volume><issue>25</issue><spage>3943</spage><epage>3957</epage><pages>3943-3957</pages><issn>1616-301X</issn><eissn>1616-3028</eissn><abstract>Using a representative model system, here electronic and structural properties of aromatic self‐assembled monolayers (SAMs) are described that contain an embedded, dipolar group. As polar unit, pyrimidine is used, with its orientation in the molecular backbone and, consequently, the direction of the embedded dipole moment being varied. The electronic and structural properties of these embedded‐dipole SAMs are thoroughly analyzed using a number of complementary characterization techniques combined with quantum‐mechanical modeling. It is shown that such mid‐chain‐substituted monolayers are highly interesting from both fundamental and application viewpoints, as the dipolar groups are found to induce a potential discontinuity inside the monolayer, electrostatically shifting the core‐level energies in the regions above and below the dipoles relative to one another. These SAMs also allow for tuning the substrate work function in a controlled manner independent of the docking chemistry and, most importantly, without modifying the SAM‐ambient interface.
A highly promising approach for changing charge‐injection barriers at the nanoscale through conjugated self‐assembled monolayers (SAMs) is described. This—in sharp contrast to the typically pursued tail‐group substitution—is realized without affecting the SAM‐ambient interface. The goal is achieved by embedding dipolar groups at varying orientation in the SAM‐forming molecules.</abstract><pub>Blackwell Publishing Ltd</pub><doi>10.1002/adfm.201500899</doi><tpages>15</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1616-301X |
ispartof | Advanced functional materials, 2015-07, Vol.25 (25), p.3943-3957 |
issn | 1616-301X 1616-3028 |
language | eng |
recordid | cdi_proquest_miscellaneous_1709765586 |
source | Wiley Online Library Journals Frontfile Complete |
subjects | Dipoles Electronics Embedded structures interface control Mathematical models molecular dipole Monolayers Orientation Self-assembled monolayers Tuning work function |
title | The Effects of Embedded Dipoles in Aromatic Self-Assembled Monolayers |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-20T20%3A48%3A12IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20Effects%20of%20Embedded%20Dipoles%20in%20Aromatic%20Self-Assembled%20Monolayers&rft.jtitle=Advanced%20functional%20materials&rft.au=Abu-Husein,%20Tarek&rft.date=2015-07-01&rft.volume=25&rft.issue=25&rft.spage=3943&rft.epage=3957&rft.pages=3943-3957&rft.issn=1616-301X&rft.eissn=1616-3028&rft_id=info:doi/10.1002/adfm.201500899&rft_dat=%3Cproquest_cross%3E1709765586%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1709765586&rft_id=info:pmid/&rfr_iscdi=true |