In Situ Determination of Soil Freezing Characteristics for Estimation of Soil Moisture Characteristics using a Dielectric Tube Sensor

The soil freezing characteristic (SFC) plays a critical role in modeling the transport of water, heat, and solutes in frozen soil. Especially, the SFC can be used to estimate the soil moisture characteristic (SMC) for unfrozen soil due to the known similarity between them. In this study, we tested a...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Soil Science Society of America journal 2014-01, Vol.78 (1), p.133-138
Hauptverfasser: Cheng, Qiang, Sun, Yurui, Xue, Xuzhang, Guo, Jia
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 138
container_issue 1
container_start_page 133
container_title Soil Science Society of America journal
container_volume 78
creator Cheng, Qiang
Sun, Yurui
Xue, Xuzhang
Guo, Jia
description The soil freezing characteristic (SFC) plays a critical role in modeling the transport of water, heat, and solutes in frozen soil. Especially, the SFC can be used to estimate the soil moisture characteristic (SMC) for unfrozen soil due to the known similarity between them. In this study, we tested an existing portable dielectric tube sensor in vertical access tubes together with a set of temperature sensors for the determination of the in situ SFC and SMC. The experiment was conducted at three sites with sandy, loamy, and silt loam soils. At each site, three SFC curves were obtained at depths of 15, 25, and 35 cm. The resulting SMCs estimated from the SFCs were compared with the SMCs determined using a pressure plate apparatus. The data from the proposed method and those of the pressure plate fit the Campbell model with 0.806 ≤ R2 ≤ 0.994 and fit the van Genuchten model with 0.638 ≤ R2 ≤ 0.994. The coefficient of determination (R2 = 0.837) and RMSE (131 kPa) showed a good agreement between the characteristic curves from the two methods. Thus, we recommend the dielectric tube sensor for determining the SFC in situ and inferring the SMC across depths.
doi_str_mv 10.2136/sssaj2013.03.0120n
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1709764436</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3222797991</sourcerecordid><originalsourceid>FETCH-LOGICAL-a425N-cf8c34bf12a471826c14b32a2b4a2bf0ffeb5ef89f733c974b5e0fe083ed84ed3</originalsourceid><addsrcrecordid>eNqNkU1v1DAQhi0EEkvhD3CyxIVLyow_8nGsdlsoKuWQcrYcdwxeZeNiJ6rKnf-No0VIwKXSjD0eP-9I9svYa4RTgbJ-l3O2ewEoT6EECpiesA0qqSuoa3zKNiBrrHTX6efsRc57ANQdwIb9vJx4H-aF72imdAiTnUOcePS8j2HkF4noR5i-8u03m6wrSMhzcJn7mPh5KQ9_859iuV8S_ccveZ1i-S7QSG5OwfGbZSDe05RjesmeeTtmevV7P2FfLs5vth-qq8_vL7dnV5VVQl9XzrdOqsGjsKrBVtQO1SCFFYMq6cF7GjT5tvONlK5rVDmBJ2gl3baKbuUJe3uce5fi94XybA4hOxpHO1FcssEGuqZWStaPQTW0iK0u6Jt_0H1c0lQeYlB1XasarbFQ4ki5FHNO5M1dKt-XHgyCWU00f0w0UGI1sYh2R9F9GOnhEQrTn30Ufb-upQ1ybV7LX2iIpzc</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1499847551</pqid></control><display><type>article</type><title>In Situ Determination of Soil Freezing Characteristics for Estimation of Soil Moisture Characteristics using a Dielectric Tube Sensor</title><source>Wiley Online Library Journals</source><creator>Cheng, Qiang ; Sun, Yurui ; Xue, Xuzhang ; Guo, Jia</creator><creatorcontrib>Cheng, Qiang ; Sun, Yurui ; Xue, Xuzhang ; Guo, Jia</creatorcontrib><description>The soil freezing characteristic (SFC) plays a critical role in modeling the transport of water, heat, and solutes in frozen soil. Especially, the SFC can be used to estimate the soil moisture characteristic (SMC) for unfrozen soil due to the known similarity between them. In this study, we tested an existing portable dielectric tube sensor in vertical access tubes together with a set of temperature sensors for the determination of the in situ SFC and SMC. The experiment was conducted at three sites with sandy, loamy, and silt loam soils. At each site, three SFC curves were obtained at depths of 15, 25, and 35 cm. The resulting SMCs estimated from the SFCs were compared with the SMCs determined using a pressure plate apparatus. The data from the proposed method and those of the pressure plate fit the Campbell model with 0.806 ≤ R2 ≤ 0.994 and fit the van Genuchten model with 0.638 ≤ R2 ≤ 0.994. The coefficient of determination (R2 = 0.837) and RMSE (131 kPa) showed a good agreement between the characteristic curves from the two methods. Thus, we recommend the dielectric tube sensor for determining the SFC in situ and inferring the SMC across depths.</description><identifier>ISSN: 0361-5995</identifier><identifier>EISSN: 1435-0661</identifier><identifier>DOI: 10.2136/sssaj2013.03.0120n</identifier><identifier>CODEN: SSSJD4</identifier><language>eng</language><publisher>Madison: The Soil Science Society of America, Inc</publisher><subject>Dielectrics ; Estimates ; Freezing ; Frozen ground ; Moisture content ; Sensors ; Silt loam ; Similarity ; Soil (material) ; Soil moisture ; Solutes ; Studies ; Transport ; Tubes</subject><ispartof>Soil Science Society of America journal, 2014-01, Vol.78 (1), p.133-138</ispartof><rights>Copyright © by the Soil Science Society of America, Inc.</rights><rights>Copyright American Society of Agronomy Jan/Feb 2014</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a425N-cf8c34bf12a471826c14b32a2b4a2bf0ffeb5ef89f733c974b5e0fe083ed84ed3</citedby><cites>FETCH-LOGICAL-a425N-cf8c34bf12a471826c14b32a2b4a2bf0ffeb5ef89f733c974b5e0fe083ed84ed3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.2136%2Fsssaj2013.03.0120n$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.2136%2Fsssaj2013.03.0120n$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,27924,27925,45574,45575</link.rule.ids></links><search><creatorcontrib>Cheng, Qiang</creatorcontrib><creatorcontrib>Sun, Yurui</creatorcontrib><creatorcontrib>Xue, Xuzhang</creatorcontrib><creatorcontrib>Guo, Jia</creatorcontrib><title>In Situ Determination of Soil Freezing Characteristics for Estimation of Soil Moisture Characteristics using a Dielectric Tube Sensor</title><title>Soil Science Society of America journal</title><description>The soil freezing characteristic (SFC) plays a critical role in modeling the transport of water, heat, and solutes in frozen soil. Especially, the SFC can be used to estimate the soil moisture characteristic (SMC) for unfrozen soil due to the known similarity between them. In this study, we tested an existing portable dielectric tube sensor in vertical access tubes together with a set of temperature sensors for the determination of the in situ SFC and SMC. The experiment was conducted at three sites with sandy, loamy, and silt loam soils. At each site, three SFC curves were obtained at depths of 15, 25, and 35 cm. The resulting SMCs estimated from the SFCs were compared with the SMCs determined using a pressure plate apparatus. The data from the proposed method and those of the pressure plate fit the Campbell model with 0.806 ≤ R2 ≤ 0.994 and fit the van Genuchten model with 0.638 ≤ R2 ≤ 0.994. The coefficient of determination (R2 = 0.837) and RMSE (131 kPa) showed a good agreement between the characteristic curves from the two methods. Thus, we recommend the dielectric tube sensor for determining the SFC in situ and inferring the SMC across depths.</description><subject>Dielectrics</subject><subject>Estimates</subject><subject>Freezing</subject><subject>Frozen ground</subject><subject>Moisture content</subject><subject>Sensors</subject><subject>Silt loam</subject><subject>Similarity</subject><subject>Soil (material)</subject><subject>Soil moisture</subject><subject>Solutes</subject><subject>Studies</subject><subject>Transport</subject><subject>Tubes</subject><issn>0361-5995</issn><issn>1435-0661</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNqNkU1v1DAQhi0EEkvhD3CyxIVLyow_8nGsdlsoKuWQcrYcdwxeZeNiJ6rKnf-No0VIwKXSjD0eP-9I9svYa4RTgbJ-l3O2ewEoT6EECpiesA0qqSuoa3zKNiBrrHTX6efsRc57ANQdwIb9vJx4H-aF72imdAiTnUOcePS8j2HkF4noR5i-8u03m6wrSMhzcJn7mPh5KQ9_859iuV8S_ccveZ1i-S7QSG5OwfGbZSDe05RjesmeeTtmevV7P2FfLs5vth-qq8_vL7dnV5VVQl9XzrdOqsGjsKrBVtQO1SCFFYMq6cF7GjT5tvONlK5rVDmBJ2gl3baKbuUJe3uce5fi94XybA4hOxpHO1FcssEGuqZWStaPQTW0iK0u6Jt_0H1c0lQeYlB1XasarbFQ4ki5FHNO5M1dKt-XHgyCWU00f0w0UGI1sYh2R9F9GOnhEQrTn30Ufb-upQ1ybV7LX2iIpzc</recordid><startdate>201401</startdate><enddate>201401</enddate><creator>Cheng, Qiang</creator><creator>Sun, Yurui</creator><creator>Xue, Xuzhang</creator><creator>Guo, Jia</creator><general>The Soil Science Society of America, Inc</general><general>American Society of Agronomy</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7ST</scope><scope>7T7</scope><scope>7X2</scope><scope>7XB</scope><scope>88I</scope><scope>8AF</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FK</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M0K</scope><scope>M2O</scope><scope>M2P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>P64</scope><scope>PATMY</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>Q9U</scope><scope>R05</scope><scope>S0X</scope><scope>SOI</scope><scope>7U5</scope><scope>KR7</scope><scope>L7M</scope></search><sort><creationdate>201401</creationdate><title>In Situ Determination of Soil Freezing Characteristics for Estimation of Soil Moisture Characteristics using a Dielectric Tube Sensor</title><author>Cheng, Qiang ; Sun, Yurui ; Xue, Xuzhang ; Guo, Jia</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a425N-cf8c34bf12a471826c14b32a2b4a2bf0ffeb5ef89f733c974b5e0fe083ed84ed3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Dielectrics</topic><topic>Estimates</topic><topic>Freezing</topic><topic>Frozen ground</topic><topic>Moisture content</topic><topic>Sensors</topic><topic>Silt loam</topic><topic>Similarity</topic><topic>Soil (material)</topic><topic>Soil moisture</topic><topic>Solutes</topic><topic>Studies</topic><topic>Transport</topic><topic>Tubes</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Cheng, Qiang</creatorcontrib><creatorcontrib>Sun, Yurui</creatorcontrib><creatorcontrib>Xue, Xuzhang</creatorcontrib><creatorcontrib>Guo, Jia</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Environment Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Agricultural Science Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>STEM Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Agriculture Science Database</collection><collection>ProQuest_Research Library</collection><collection>ProQuest Science Journals</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Earth, Atmospheric &amp; Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering collection</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><collection>University of Michigan</collection><collection>SIRS Editorial</collection><collection>Environment Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Soil Science Society of America journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Cheng, Qiang</au><au>Sun, Yurui</au><au>Xue, Xuzhang</au><au>Guo, Jia</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>In Situ Determination of Soil Freezing Characteristics for Estimation of Soil Moisture Characteristics using a Dielectric Tube Sensor</atitle><jtitle>Soil Science Society of America journal</jtitle><date>2014-01</date><risdate>2014</risdate><volume>78</volume><issue>1</issue><spage>133</spage><epage>138</epage><pages>133-138</pages><issn>0361-5995</issn><eissn>1435-0661</eissn><coden>SSSJD4</coden><abstract>The soil freezing characteristic (SFC) plays a critical role in modeling the transport of water, heat, and solutes in frozen soil. Especially, the SFC can be used to estimate the soil moisture characteristic (SMC) for unfrozen soil due to the known similarity between them. In this study, we tested an existing portable dielectric tube sensor in vertical access tubes together with a set of temperature sensors for the determination of the in situ SFC and SMC. The experiment was conducted at three sites with sandy, loamy, and silt loam soils. At each site, three SFC curves were obtained at depths of 15, 25, and 35 cm. The resulting SMCs estimated from the SFCs were compared with the SMCs determined using a pressure plate apparatus. The data from the proposed method and those of the pressure plate fit the Campbell model with 0.806 ≤ R2 ≤ 0.994 and fit the van Genuchten model with 0.638 ≤ R2 ≤ 0.994. The coefficient of determination (R2 = 0.837) and RMSE (131 kPa) showed a good agreement between the characteristic curves from the two methods. Thus, we recommend the dielectric tube sensor for determining the SFC in situ and inferring the SMC across depths.</abstract><cop>Madison</cop><pub>The Soil Science Society of America, Inc</pub><doi>10.2136/sssaj2013.03.0120n</doi><tpages>6</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0361-5995
ispartof Soil Science Society of America journal, 2014-01, Vol.78 (1), p.133-138
issn 0361-5995
1435-0661
language eng
recordid cdi_proquest_miscellaneous_1709764436
source Wiley Online Library Journals
subjects Dielectrics
Estimates
Freezing
Frozen ground
Moisture content
Sensors
Silt loam
Similarity
Soil (material)
Soil moisture
Solutes
Studies
Transport
Tubes
title In Situ Determination of Soil Freezing Characteristics for Estimation of Soil Moisture Characteristics using a Dielectric Tube Sensor
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T07%3A17%3A29IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=In%20Situ%20Determination%20of%20Soil%20Freezing%20Characteristics%20for%20Estimation%20of%20Soil%20Moisture%20Characteristics%20using%20a%20Dielectric%20Tube%20Sensor&rft.jtitle=Soil%20Science%20Society%20of%20America%20journal&rft.au=Cheng,%20Qiang&rft.date=2014-01&rft.volume=78&rft.issue=1&rft.spage=133&rft.epage=138&rft.pages=133-138&rft.issn=0361-5995&rft.eissn=1435-0661&rft.coden=SSSJD4&rft_id=info:doi/10.2136/sssaj2013.03.0120n&rft_dat=%3Cproquest_cross%3E3222797991%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1499847551&rft_id=info:pmid/&rfr_iscdi=true