An unsymmetric 4-node, 8-DOF plane membrane element perfectly breaking through MacNeal's theorem

Summary Among numerous finite element techniques, few models can perfectly (without any numerical problems) break through MacNeal's theorem: any 4‐node, 8‐DOF membrane element will either lock in in‐plane bending or fail to pass a C0 patch test when the element's shape is an isosceles trap...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal for numerical methods in engineering 2015-08, Vol.103 (7), p.469-500
Hauptverfasser: Cen, Song, Zhou, Pei-Lei, Li, Chen-Feng, Wu, Cheng-Jin
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 500
container_issue 7
container_start_page 469
container_title International journal for numerical methods in engineering
container_volume 103
creator Cen, Song
Zhou, Pei-Lei
Li, Chen-Feng
Wu, Cheng-Jin
description Summary Among numerous finite element techniques, few models can perfectly (without any numerical problems) break through MacNeal's theorem: any 4‐node, 8‐DOF membrane element will either lock in in‐plane bending or fail to pass a C0 patch test when the element's shape is an isosceles trapezoid. In this paper, a 4‐node plane quadrilateral membrane element is developed following the unsymmetric formulation concept, which means two different sets of interpolation functions for displacement fields are simultaneously used. The first set employs the shape functions of the traditional 4‐node bilinear isoparametric element, while the second set adopts a novel composite coordinate interpolation scheme with analytical trail function method, in which the Cartesian coordinates (x,y) and the second form of quadrilateral area coordinates (QACM‐II) (S,T) are applied together. The resulting element US‐ATFQ4 exhibits amazing performance in rigorous numerical tests. It is insensitive to various serious mesh distortions, free of trapezoidal locking, and can satisfy both the classical first‐order patch test and the second‐order patch test for pure bending. Furthermore, because of usage of the second form of quadrilateral area coordinates (QACM‐II), the new element provides the invariance for the coordinate rotation. It seems that the behaviors of the present model are beyond the well‐known contradiction defined by MacNeal's theorem. Copyright © 2015 John Wiley & Sons, Ltd.
doi_str_mv 10.1002/nme.4899
format Article
fullrecord <record><control><sourceid>proquest_wiley</sourceid><recordid>TN_cdi_proquest_miscellaneous_1709760363</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1709760363</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3319-3bcc36013942205c7a9a79d37ddb321a7c67948f3cf91616569be72b4fa7ca0e3</originalsourceid><addsrcrecordid>eNpdkMlOwzAQhi0EEmWReARLHOBAih0ndn1E7KULB5ajcZxJmxInxU4EeXsSFYHEaUbzfxrNfAgdUTKkhITnpYVhNJJyCw0okSIgIRHbaNBFMojliO6iPe9XhFAaEzZAbxclbkrfWgu1yw2OgrJK4QyPgqv5DV4XugRswSaub6AAC2WN1-AyMHXR4sSBfs_LBa6XrmoWSzzVZga6OPHdBCoH9gDtZLrwcPhT99HzzfXT5V0wmd_eX15MAsMYlQFLjGGcUCajMCSxEVpqIVMm0jRhIdXCcCGjUcZMJimnPOYyAREmUdZFmgDbR6ebvWtXfTTga2Vzb6DoP6gar6jobHDCOOvQ43_oqmpc2V2nKJdRHIdUko4KNtRnXkCr1i632rWKEtV7Vp1n1XtWs-l1X__43Nfw9ctr9664YCJWr7Nb9RKPx5OH2aPi7BsDxn-q</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1694552190</pqid></control><display><type>article</type><title>An unsymmetric 4-node, 8-DOF plane membrane element perfectly breaking through MacNeal's theorem</title><source>Access via Wiley Online Library</source><creator>Cen, Song ; Zhou, Pei-Lei ; Li, Chen-Feng ; Wu, Cheng-Jin</creator><creatorcontrib>Cen, Song ; Zhou, Pei-Lei ; Li, Chen-Feng ; Wu, Cheng-Jin</creatorcontrib><description>Summary Among numerous finite element techniques, few models can perfectly (without any numerical problems) break through MacNeal's theorem: any 4‐node, 8‐DOF membrane element will either lock in in‐plane bending or fail to pass a C0 patch test when the element's shape is an isosceles trapezoid. In this paper, a 4‐node plane quadrilateral membrane element is developed following the unsymmetric formulation concept, which means two different sets of interpolation functions for displacement fields are simultaneously used. The first set employs the shape functions of the traditional 4‐node bilinear isoparametric element, while the second set adopts a novel composite coordinate interpolation scheme with analytical trail function method, in which the Cartesian coordinates (x,y) and the second form of quadrilateral area coordinates (QACM‐II) (S,T) are applied together. The resulting element US‐ATFQ4 exhibits amazing performance in rigorous numerical tests. It is insensitive to various serious mesh distortions, free of trapezoidal locking, and can satisfy both the classical first‐order patch test and the second‐order patch test for pure bending. Furthermore, because of usage of the second form of quadrilateral area coordinates (QACM‐II), the new element provides the invariance for the coordinate rotation. It seems that the behaviors of the present model are beyond the well‐known contradiction defined by MacNeal's theorem. Copyright © 2015 John Wiley &amp; Sons, Ltd.</description><identifier>ISSN: 0029-5981</identifier><identifier>EISSN: 1097-0207</identifier><identifier>DOI: 10.1002/nme.4899</identifier><identifier>CODEN: IJNMBH</identifier><language>eng</language><publisher>Bognor Regis: Blackwell Publishing Ltd</publisher><subject>4-node plane membrane element ; analytical trial function ; Breaking ; finite element ; MacNeal's theorem ; Mathematical analysis ; Mathematical models ; Membranes ; Patch tests ; Planes ; Quadrilaterals ; the second form of quadrilateral area coordinates (QACM-II) ; Theorems ; unsymmetric formulation</subject><ispartof>International journal for numerical methods in engineering, 2015-08, Vol.103 (7), p.469-500</ispartof><rights>Copyright © 2015 John Wiley &amp; Sons, Ltd.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3319-3bcc36013942205c7a9a79d37ddb321a7c67948f3cf91616569be72b4fa7ca0e3</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fnme.4899$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fnme.4899$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,27924,27925,45574,45575</link.rule.ids></links><search><creatorcontrib>Cen, Song</creatorcontrib><creatorcontrib>Zhou, Pei-Lei</creatorcontrib><creatorcontrib>Li, Chen-Feng</creatorcontrib><creatorcontrib>Wu, Cheng-Jin</creatorcontrib><title>An unsymmetric 4-node, 8-DOF plane membrane element perfectly breaking through MacNeal's theorem</title><title>International journal for numerical methods in engineering</title><addtitle>Int. J. Numer. Meth. Engng</addtitle><description>Summary Among numerous finite element techniques, few models can perfectly (without any numerical problems) break through MacNeal's theorem: any 4‐node, 8‐DOF membrane element will either lock in in‐plane bending or fail to pass a C0 patch test when the element's shape is an isosceles trapezoid. In this paper, a 4‐node plane quadrilateral membrane element is developed following the unsymmetric formulation concept, which means two different sets of interpolation functions for displacement fields are simultaneously used. The first set employs the shape functions of the traditional 4‐node bilinear isoparametric element, while the second set adopts a novel composite coordinate interpolation scheme with analytical trail function method, in which the Cartesian coordinates (x,y) and the second form of quadrilateral area coordinates (QACM‐II) (S,T) are applied together. The resulting element US‐ATFQ4 exhibits amazing performance in rigorous numerical tests. It is insensitive to various serious mesh distortions, free of trapezoidal locking, and can satisfy both the classical first‐order patch test and the second‐order patch test for pure bending. Furthermore, because of usage of the second form of quadrilateral area coordinates (QACM‐II), the new element provides the invariance for the coordinate rotation. It seems that the behaviors of the present model are beyond the well‐known contradiction defined by MacNeal's theorem. Copyright © 2015 John Wiley &amp; Sons, Ltd.</description><subject>4-node plane membrane element</subject><subject>analytical trial function</subject><subject>Breaking</subject><subject>finite element</subject><subject>MacNeal's theorem</subject><subject>Mathematical analysis</subject><subject>Mathematical models</subject><subject>Membranes</subject><subject>Patch tests</subject><subject>Planes</subject><subject>Quadrilaterals</subject><subject>the second form of quadrilateral area coordinates (QACM-II)</subject><subject>Theorems</subject><subject>unsymmetric formulation</subject><issn>0029-5981</issn><issn>1097-0207</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><recordid>eNpdkMlOwzAQhi0EEmWReARLHOBAih0ndn1E7KULB5ajcZxJmxInxU4EeXsSFYHEaUbzfxrNfAgdUTKkhITnpYVhNJJyCw0okSIgIRHbaNBFMojliO6iPe9XhFAaEzZAbxclbkrfWgu1yw2OgrJK4QyPgqv5DV4XugRswSaub6AAC2WN1-AyMHXR4sSBfs_LBa6XrmoWSzzVZga6OPHdBCoH9gDtZLrwcPhT99HzzfXT5V0wmd_eX15MAsMYlQFLjGGcUCajMCSxEVpqIVMm0jRhIdXCcCGjUcZMJimnPOYyAREmUdZFmgDbR6ebvWtXfTTga2Vzb6DoP6gar6jobHDCOOvQ43_oqmpc2V2nKJdRHIdUko4KNtRnXkCr1i632rWKEtV7Vp1n1XtWs-l1X__43Nfw9ctr9664YCJWr7Nb9RKPx5OH2aPi7BsDxn-q</recordid><startdate>20150817</startdate><enddate>20150817</enddate><creator>Cen, Song</creator><creator>Zhou, Pei-Lei</creator><creator>Li, Chen-Feng</creator><creator>Wu, Cheng-Jin</creator><general>Blackwell Publishing Ltd</general><general>Wiley Subscription Services, Inc</general><scope>BSCLL</scope><scope>7SC</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20150817</creationdate><title>An unsymmetric 4-node, 8-DOF plane membrane element perfectly breaking through MacNeal's theorem</title><author>Cen, Song ; Zhou, Pei-Lei ; Li, Chen-Feng ; Wu, Cheng-Jin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3319-3bcc36013942205c7a9a79d37ddb321a7c67948f3cf91616569be72b4fa7ca0e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>4-node plane membrane element</topic><topic>analytical trial function</topic><topic>Breaking</topic><topic>finite element</topic><topic>MacNeal's theorem</topic><topic>Mathematical analysis</topic><topic>Mathematical models</topic><topic>Membranes</topic><topic>Patch tests</topic><topic>Planes</topic><topic>Quadrilaterals</topic><topic>the second form of quadrilateral area coordinates (QACM-II)</topic><topic>Theorems</topic><topic>unsymmetric formulation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Cen, Song</creatorcontrib><creatorcontrib>Zhou, Pei-Lei</creatorcontrib><creatorcontrib>Li, Chen-Feng</creatorcontrib><creatorcontrib>Wu, Cheng-Jin</creatorcontrib><collection>Istex</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>International journal for numerical methods in engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Cen, Song</au><au>Zhou, Pei-Lei</au><au>Li, Chen-Feng</au><au>Wu, Cheng-Jin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>An unsymmetric 4-node, 8-DOF plane membrane element perfectly breaking through MacNeal's theorem</atitle><jtitle>International journal for numerical methods in engineering</jtitle><addtitle>Int. J. Numer. Meth. Engng</addtitle><date>2015-08-17</date><risdate>2015</risdate><volume>103</volume><issue>7</issue><spage>469</spage><epage>500</epage><pages>469-500</pages><issn>0029-5981</issn><eissn>1097-0207</eissn><coden>IJNMBH</coden><abstract>Summary Among numerous finite element techniques, few models can perfectly (without any numerical problems) break through MacNeal's theorem: any 4‐node, 8‐DOF membrane element will either lock in in‐plane bending or fail to pass a C0 patch test when the element's shape is an isosceles trapezoid. In this paper, a 4‐node plane quadrilateral membrane element is developed following the unsymmetric formulation concept, which means two different sets of interpolation functions for displacement fields are simultaneously used. The first set employs the shape functions of the traditional 4‐node bilinear isoparametric element, while the second set adopts a novel composite coordinate interpolation scheme with analytical trail function method, in which the Cartesian coordinates (x,y) and the second form of quadrilateral area coordinates (QACM‐II) (S,T) are applied together. The resulting element US‐ATFQ4 exhibits amazing performance in rigorous numerical tests. It is insensitive to various serious mesh distortions, free of trapezoidal locking, and can satisfy both the classical first‐order patch test and the second‐order patch test for pure bending. Furthermore, because of usage of the second form of quadrilateral area coordinates (QACM‐II), the new element provides the invariance for the coordinate rotation. It seems that the behaviors of the present model are beyond the well‐known contradiction defined by MacNeal's theorem. Copyright © 2015 John Wiley &amp; Sons, Ltd.</abstract><cop>Bognor Regis</cop><pub>Blackwell Publishing Ltd</pub><doi>10.1002/nme.4899</doi><tpages>32</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0029-5981
ispartof International journal for numerical methods in engineering, 2015-08, Vol.103 (7), p.469-500
issn 0029-5981
1097-0207
language eng
recordid cdi_proquest_miscellaneous_1709760363
source Access via Wiley Online Library
subjects 4-node plane membrane element
analytical trial function
Breaking
finite element
MacNeal's theorem
Mathematical analysis
Mathematical models
Membranes
Patch tests
Planes
Quadrilaterals
the second form of quadrilateral area coordinates (QACM-II)
Theorems
unsymmetric formulation
title An unsymmetric 4-node, 8-DOF plane membrane element perfectly breaking through MacNeal's theorem
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-23T12%3A39%3A59IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_wiley&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=An%20unsymmetric%204-node,%208-DOF%20plane%20membrane%20element%20perfectly%20breaking%20through%20MacNeal's%20theorem&rft.jtitle=International%20journal%20for%20numerical%20methods%20in%20engineering&rft.au=Cen,%20Song&rft.date=2015-08-17&rft.volume=103&rft.issue=7&rft.spage=469&rft.epage=500&rft.pages=469-500&rft.issn=0029-5981&rft.eissn=1097-0207&rft.coden=IJNMBH&rft_id=info:doi/10.1002/nme.4899&rft_dat=%3Cproquest_wiley%3E1709760363%3C/proquest_wiley%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1694552190&rft_id=info:pmid/&rfr_iscdi=true