An unsymmetric 4-node, 8-DOF plane membrane element perfectly breaking through MacNeal's theorem
Summary Among numerous finite element techniques, few models can perfectly (without any numerical problems) break through MacNeal's theorem: any 4‐node, 8‐DOF membrane element will either lock in in‐plane bending or fail to pass a C0 patch test when the element's shape is an isosceles trap...
Gespeichert in:
Veröffentlicht in: | International journal for numerical methods in engineering 2015-08, Vol.103 (7), p.469-500 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 500 |
---|---|
container_issue | 7 |
container_start_page | 469 |
container_title | International journal for numerical methods in engineering |
container_volume | 103 |
creator | Cen, Song Zhou, Pei-Lei Li, Chen-Feng Wu, Cheng-Jin |
description | Summary
Among numerous finite element techniques, few models can perfectly (without any numerical problems) break through MacNeal's theorem: any 4‐node, 8‐DOF membrane element will either lock in in‐plane bending or fail to pass a C0 patch test when the element's shape is an isosceles trapezoid. In this paper, a 4‐node plane quadrilateral membrane element is developed following the unsymmetric formulation concept, which means two different sets of interpolation functions for displacement fields are simultaneously used. The first set employs the shape functions of the traditional 4‐node bilinear isoparametric element, while the second set adopts a novel composite coordinate interpolation scheme with analytical trail function method, in which the Cartesian coordinates (x,y) and the second form of quadrilateral area coordinates (QACM‐II) (S,T) are applied together. The resulting element US‐ATFQ4 exhibits amazing performance in rigorous numerical tests. It is insensitive to various serious mesh distortions, free of trapezoidal locking, and can satisfy both the classical first‐order patch test and the second‐order patch test for pure bending. Furthermore, because of usage of the second form of quadrilateral area coordinates (QACM‐II), the new element provides the invariance for the coordinate rotation. It seems that the behaviors of the present model are beyond the well‐known contradiction defined by MacNeal's theorem. Copyright © 2015 John Wiley & Sons, Ltd. |
doi_str_mv | 10.1002/nme.4899 |
format | Article |
fullrecord | <record><control><sourceid>proquest_wiley</sourceid><recordid>TN_cdi_proquest_miscellaneous_1709760363</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1709760363</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3319-3bcc36013942205c7a9a79d37ddb321a7c67948f3cf91616569be72b4fa7ca0e3</originalsourceid><addsrcrecordid>eNpdkMlOwzAQhi0EEmWReARLHOBAih0ndn1E7KULB5ajcZxJmxInxU4EeXsSFYHEaUbzfxrNfAgdUTKkhITnpYVhNJJyCw0okSIgIRHbaNBFMojliO6iPe9XhFAaEzZAbxclbkrfWgu1yw2OgrJK4QyPgqv5DV4XugRswSaub6AAC2WN1-AyMHXR4sSBfs_LBa6XrmoWSzzVZga6OPHdBCoH9gDtZLrwcPhT99HzzfXT5V0wmd_eX15MAsMYlQFLjGGcUCajMCSxEVpqIVMm0jRhIdXCcCGjUcZMJimnPOYyAREmUdZFmgDbR6ebvWtXfTTga2Vzb6DoP6gar6jobHDCOOvQ43_oqmpc2V2nKJdRHIdUko4KNtRnXkCr1i632rWKEtV7Vp1n1XtWs-l1X__43Nfw9ctr9664YCJWr7Nb9RKPx5OH2aPi7BsDxn-q</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1694552190</pqid></control><display><type>article</type><title>An unsymmetric 4-node, 8-DOF plane membrane element perfectly breaking through MacNeal's theorem</title><source>Access via Wiley Online Library</source><creator>Cen, Song ; Zhou, Pei-Lei ; Li, Chen-Feng ; Wu, Cheng-Jin</creator><creatorcontrib>Cen, Song ; Zhou, Pei-Lei ; Li, Chen-Feng ; Wu, Cheng-Jin</creatorcontrib><description>Summary
Among numerous finite element techniques, few models can perfectly (without any numerical problems) break through MacNeal's theorem: any 4‐node, 8‐DOF membrane element will either lock in in‐plane bending or fail to pass a C0 patch test when the element's shape is an isosceles trapezoid. In this paper, a 4‐node plane quadrilateral membrane element is developed following the unsymmetric formulation concept, which means two different sets of interpolation functions for displacement fields are simultaneously used. The first set employs the shape functions of the traditional 4‐node bilinear isoparametric element, while the second set adopts a novel composite coordinate interpolation scheme with analytical trail function method, in which the Cartesian coordinates (x,y) and the second form of quadrilateral area coordinates (QACM‐II) (S,T) are applied together. The resulting element US‐ATFQ4 exhibits amazing performance in rigorous numerical tests. It is insensitive to various serious mesh distortions, free of trapezoidal locking, and can satisfy both the classical first‐order patch test and the second‐order patch test for pure bending. Furthermore, because of usage of the second form of quadrilateral area coordinates (QACM‐II), the new element provides the invariance for the coordinate rotation. It seems that the behaviors of the present model are beyond the well‐known contradiction defined by MacNeal's theorem. Copyright © 2015 John Wiley & Sons, Ltd.</description><identifier>ISSN: 0029-5981</identifier><identifier>EISSN: 1097-0207</identifier><identifier>DOI: 10.1002/nme.4899</identifier><identifier>CODEN: IJNMBH</identifier><language>eng</language><publisher>Bognor Regis: Blackwell Publishing Ltd</publisher><subject>4-node plane membrane element ; analytical trial function ; Breaking ; finite element ; MacNeal's theorem ; Mathematical analysis ; Mathematical models ; Membranes ; Patch tests ; Planes ; Quadrilaterals ; the second form of quadrilateral area coordinates (QACM-II) ; Theorems ; unsymmetric formulation</subject><ispartof>International journal for numerical methods in engineering, 2015-08, Vol.103 (7), p.469-500</ispartof><rights>Copyright © 2015 John Wiley & Sons, Ltd.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3319-3bcc36013942205c7a9a79d37ddb321a7c67948f3cf91616569be72b4fa7ca0e3</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fnme.4899$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fnme.4899$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,27924,27925,45574,45575</link.rule.ids></links><search><creatorcontrib>Cen, Song</creatorcontrib><creatorcontrib>Zhou, Pei-Lei</creatorcontrib><creatorcontrib>Li, Chen-Feng</creatorcontrib><creatorcontrib>Wu, Cheng-Jin</creatorcontrib><title>An unsymmetric 4-node, 8-DOF plane membrane element perfectly breaking through MacNeal's theorem</title><title>International journal for numerical methods in engineering</title><addtitle>Int. J. Numer. Meth. Engng</addtitle><description>Summary
Among numerous finite element techniques, few models can perfectly (without any numerical problems) break through MacNeal's theorem: any 4‐node, 8‐DOF membrane element will either lock in in‐plane bending or fail to pass a C0 patch test when the element's shape is an isosceles trapezoid. In this paper, a 4‐node plane quadrilateral membrane element is developed following the unsymmetric formulation concept, which means two different sets of interpolation functions for displacement fields are simultaneously used. The first set employs the shape functions of the traditional 4‐node bilinear isoparametric element, while the second set adopts a novel composite coordinate interpolation scheme with analytical trail function method, in which the Cartesian coordinates (x,y) and the second form of quadrilateral area coordinates (QACM‐II) (S,T) are applied together. The resulting element US‐ATFQ4 exhibits amazing performance in rigorous numerical tests. It is insensitive to various serious mesh distortions, free of trapezoidal locking, and can satisfy both the classical first‐order patch test and the second‐order patch test for pure bending. Furthermore, because of usage of the second form of quadrilateral area coordinates (QACM‐II), the new element provides the invariance for the coordinate rotation. It seems that the behaviors of the present model are beyond the well‐known contradiction defined by MacNeal's theorem. Copyright © 2015 John Wiley & Sons, Ltd.</description><subject>4-node plane membrane element</subject><subject>analytical trial function</subject><subject>Breaking</subject><subject>finite element</subject><subject>MacNeal's theorem</subject><subject>Mathematical analysis</subject><subject>Mathematical models</subject><subject>Membranes</subject><subject>Patch tests</subject><subject>Planes</subject><subject>Quadrilaterals</subject><subject>the second form of quadrilateral area coordinates (QACM-II)</subject><subject>Theorems</subject><subject>unsymmetric formulation</subject><issn>0029-5981</issn><issn>1097-0207</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><recordid>eNpdkMlOwzAQhi0EEmWReARLHOBAih0ndn1E7KULB5ajcZxJmxInxU4EeXsSFYHEaUbzfxrNfAgdUTKkhITnpYVhNJJyCw0okSIgIRHbaNBFMojliO6iPe9XhFAaEzZAbxclbkrfWgu1yw2OgrJK4QyPgqv5DV4XugRswSaub6AAC2WN1-AyMHXR4sSBfs_LBa6XrmoWSzzVZga6OPHdBCoH9gDtZLrwcPhT99HzzfXT5V0wmd_eX15MAsMYlQFLjGGcUCajMCSxEVpqIVMm0jRhIdXCcCGjUcZMJimnPOYyAREmUdZFmgDbR6ebvWtXfTTga2Vzb6DoP6gar6jobHDCOOvQ43_oqmpc2V2nKJdRHIdUko4KNtRnXkCr1i632rWKEtV7Vp1n1XtWs-l1X__43Nfw9ctr9664YCJWr7Nb9RKPx5OH2aPi7BsDxn-q</recordid><startdate>20150817</startdate><enddate>20150817</enddate><creator>Cen, Song</creator><creator>Zhou, Pei-Lei</creator><creator>Li, Chen-Feng</creator><creator>Wu, Cheng-Jin</creator><general>Blackwell Publishing Ltd</general><general>Wiley Subscription Services, Inc</general><scope>BSCLL</scope><scope>7SC</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20150817</creationdate><title>An unsymmetric 4-node, 8-DOF plane membrane element perfectly breaking through MacNeal's theorem</title><author>Cen, Song ; Zhou, Pei-Lei ; Li, Chen-Feng ; Wu, Cheng-Jin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3319-3bcc36013942205c7a9a79d37ddb321a7c67948f3cf91616569be72b4fa7ca0e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>4-node plane membrane element</topic><topic>analytical trial function</topic><topic>Breaking</topic><topic>finite element</topic><topic>MacNeal's theorem</topic><topic>Mathematical analysis</topic><topic>Mathematical models</topic><topic>Membranes</topic><topic>Patch tests</topic><topic>Planes</topic><topic>Quadrilaterals</topic><topic>the second form of quadrilateral area coordinates (QACM-II)</topic><topic>Theorems</topic><topic>unsymmetric formulation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Cen, Song</creatorcontrib><creatorcontrib>Zhou, Pei-Lei</creatorcontrib><creatorcontrib>Li, Chen-Feng</creatorcontrib><creatorcontrib>Wu, Cheng-Jin</creatorcontrib><collection>Istex</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>International journal for numerical methods in engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Cen, Song</au><au>Zhou, Pei-Lei</au><au>Li, Chen-Feng</au><au>Wu, Cheng-Jin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>An unsymmetric 4-node, 8-DOF plane membrane element perfectly breaking through MacNeal's theorem</atitle><jtitle>International journal for numerical methods in engineering</jtitle><addtitle>Int. J. Numer. Meth. Engng</addtitle><date>2015-08-17</date><risdate>2015</risdate><volume>103</volume><issue>7</issue><spage>469</spage><epage>500</epage><pages>469-500</pages><issn>0029-5981</issn><eissn>1097-0207</eissn><coden>IJNMBH</coden><abstract>Summary
Among numerous finite element techniques, few models can perfectly (without any numerical problems) break through MacNeal's theorem: any 4‐node, 8‐DOF membrane element will either lock in in‐plane bending or fail to pass a C0 patch test when the element's shape is an isosceles trapezoid. In this paper, a 4‐node plane quadrilateral membrane element is developed following the unsymmetric formulation concept, which means two different sets of interpolation functions for displacement fields are simultaneously used. The first set employs the shape functions of the traditional 4‐node bilinear isoparametric element, while the second set adopts a novel composite coordinate interpolation scheme with analytical trail function method, in which the Cartesian coordinates (x,y) and the second form of quadrilateral area coordinates (QACM‐II) (S,T) are applied together. The resulting element US‐ATFQ4 exhibits amazing performance in rigorous numerical tests. It is insensitive to various serious mesh distortions, free of trapezoidal locking, and can satisfy both the classical first‐order patch test and the second‐order patch test for pure bending. Furthermore, because of usage of the second form of quadrilateral area coordinates (QACM‐II), the new element provides the invariance for the coordinate rotation. It seems that the behaviors of the present model are beyond the well‐known contradiction defined by MacNeal's theorem. Copyright © 2015 John Wiley & Sons, Ltd.</abstract><cop>Bognor Regis</cop><pub>Blackwell Publishing Ltd</pub><doi>10.1002/nme.4899</doi><tpages>32</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0029-5981 |
ispartof | International journal for numerical methods in engineering, 2015-08, Vol.103 (7), p.469-500 |
issn | 0029-5981 1097-0207 |
language | eng |
recordid | cdi_proquest_miscellaneous_1709760363 |
source | Access via Wiley Online Library |
subjects | 4-node plane membrane element analytical trial function Breaking finite element MacNeal's theorem Mathematical analysis Mathematical models Membranes Patch tests Planes Quadrilaterals the second form of quadrilateral area coordinates (QACM-II) Theorems unsymmetric formulation |
title | An unsymmetric 4-node, 8-DOF plane membrane element perfectly breaking through MacNeal's theorem |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-23T12%3A39%3A59IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_wiley&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=An%20unsymmetric%204-node,%208-DOF%20plane%20membrane%20element%20perfectly%20breaking%20through%20MacNeal's%20theorem&rft.jtitle=International%20journal%20for%20numerical%20methods%20in%20engineering&rft.au=Cen,%20Song&rft.date=2015-08-17&rft.volume=103&rft.issue=7&rft.spage=469&rft.epage=500&rft.pages=469-500&rft.issn=0029-5981&rft.eissn=1097-0207&rft.coden=IJNMBH&rft_id=info:doi/10.1002/nme.4899&rft_dat=%3Cproquest_wiley%3E1709760363%3C/proquest_wiley%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1694552190&rft_id=info:pmid/&rfr_iscdi=true |