A reduced basis method with exact-solution certificates for steady symmetric coercive equations

We introduce a reduced basis method that computes rigorous upper and lower bounds of the energy associated with the infinite-dimensional weak solution of parametrized steady symmetric coercive partial differential equations with piecewise polynomial forcing and operators that admit decompositions th...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Computer methods in applied mechanics and engineering 2015-04, Vol.287, p.290-309
1. Verfasser: Yano, Masayuki
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 309
container_issue
container_start_page 290
container_title Computer methods in applied mechanics and engineering
container_volume 287
creator Yano, Masayuki
description We introduce a reduced basis method that computes rigorous upper and lower bounds of the energy associated with the infinite-dimensional weak solution of parametrized steady symmetric coercive partial differential equations with piecewise polynomial forcing and operators that admit decompositions that are affine in functions of parameters. The construction of the upper bound appeals to the standard primal variational argument; the construction of the lower bound appeals to the complementary variational principle. We identify algebraic conditions for the reduced basis approximation of the dual variable that results in an exact satisfaction of the dual feasibility conditions and hence a rigorous lower bound. The formulation permits an offline–online computational decomposition such that, in the online stage, the approximation and exact certificates can be evaluated in complexity independent of the underlying finite element discretization. We demonstrate the technique in two numerical examples: a one-dimensional reaction–diffusion problem with a parametrized diffusivity constant; a planar linear elasticity problem with a geometry deformation. We confirm in both cases that the method produces guaranteed upper and lower bounds of the energy at any parameter value, for any finite element discretization, and for any reduced basis approximation. •Reduced basis method that provides rigorous bounds of the exact PDE energy.•Upper bound computation is based on variational argument.•Lower bound computation is based on complementary variational principle.•Bound evaluation permits offline–online computational decomposition.
doi_str_mv 10.1016/j.cma.2015.01.003
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1709758780</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0045782515000043</els_id><sourcerecordid>1709758780</sourcerecordid><originalsourceid>FETCH-LOGICAL-c330t-8f284ea6adc4fcf109e93dcc3235dbf43ad9ad4bea7ca972cfc64b38b26ac8e83</originalsourceid><addsrcrecordid>eNp9kDtPwzAUhS0EEqXwA9g8siTYcR6OmKqKl1SJBWbLub5WXSV1azuF_ntSlZmz3OV8VzofIfec5Zzx-nGTw6DzgvEqZzxnTFyQGZdNmxVcyEsyY6ysskYW1TW5iXHDpkhezIha0IBmBDS009FFOmBae0O_XVpT_NGQsuj7MTm_pYAhOetAJ4zU-kBjQm2ONB6HiQoOKHgM4A5IcT_qExNvyZXVfcS7vzsnXy_Pn8u3bPXx-r5crDIQgqVM2kKWqGttoLRgOWuxFQZAFKIynS2FNq02ZYe6Ad02BVioy07Irqg1SJRiTh7Of3fB70eMSQ0uAva93qIfo-INa5tKNpJNVX6uQvAxBrRqF9ygw1Fxpk4y1UZNMtVJpmJcTTIn5unM4LTh4DCoCA63kzYXEJIy3v1D_wIYr3_J</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1709758780</pqid></control><display><type>article</type><title>A reduced basis method with exact-solution certificates for steady symmetric coercive equations</title><source>Access via ScienceDirect (Elsevier)</source><creator>Yano, Masayuki</creator><creatorcontrib>Yano, Masayuki</creatorcontrib><description>We introduce a reduced basis method that computes rigorous upper and lower bounds of the energy associated with the infinite-dimensional weak solution of parametrized steady symmetric coercive partial differential equations with piecewise polynomial forcing and operators that admit decompositions that are affine in functions of parameters. The construction of the upper bound appeals to the standard primal variational argument; the construction of the lower bound appeals to the complementary variational principle. We identify algebraic conditions for the reduced basis approximation of the dual variable that results in an exact satisfaction of the dual feasibility conditions and hence a rigorous lower bound. The formulation permits an offline–online computational decomposition such that, in the online stage, the approximation and exact certificates can be evaluated in complexity independent of the underlying finite element discretization. We demonstrate the technique in two numerical examples: a one-dimensional reaction–diffusion problem with a parametrized diffusivity constant; a planar linear elasticity problem with a geometry deformation. We confirm in both cases that the method produces guaranteed upper and lower bounds of the energy at any parameter value, for any finite element discretization, and for any reduced basis approximation. •Reduced basis method that provides rigorous bounds of the exact PDE energy.•Upper bound computation is based on variational argument.•Lower bound computation is based on complementary variational principle.•Bound evaluation permits offline–online computational decomposition.</description><identifier>ISSN: 0045-7825</identifier><identifier>EISSN: 1879-2138</identifier><identifier>DOI: 10.1016/j.cma.2015.01.003</identifier><language>eng</language><publisher>Elsevier B.V</publisher><subject>a posteriori error bound ; Appeals ; Approximation ; Coercive force ; Complementary variational principle ; Construction standards ; Discretization ; Lower bounds ; Mathematical analysis ; Mathematical models ; Partial differential equations ; Reduced basis</subject><ispartof>Computer methods in applied mechanics and engineering, 2015-04, Vol.287, p.290-309</ispartof><rights>2015 Elsevier B.V.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c330t-8f284ea6adc4fcf109e93dcc3235dbf43ad9ad4bea7ca972cfc64b38b26ac8e83</citedby><cites>FETCH-LOGICAL-c330t-8f284ea6adc4fcf109e93dcc3235dbf43ad9ad4bea7ca972cfc64b38b26ac8e83</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.cma.2015.01.003$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>315,781,785,3551,27926,27927,45997</link.rule.ids></links><search><creatorcontrib>Yano, Masayuki</creatorcontrib><title>A reduced basis method with exact-solution certificates for steady symmetric coercive equations</title><title>Computer methods in applied mechanics and engineering</title><description>We introduce a reduced basis method that computes rigorous upper and lower bounds of the energy associated with the infinite-dimensional weak solution of parametrized steady symmetric coercive partial differential equations with piecewise polynomial forcing and operators that admit decompositions that are affine in functions of parameters. The construction of the upper bound appeals to the standard primal variational argument; the construction of the lower bound appeals to the complementary variational principle. We identify algebraic conditions for the reduced basis approximation of the dual variable that results in an exact satisfaction of the dual feasibility conditions and hence a rigorous lower bound. The formulation permits an offline–online computational decomposition such that, in the online stage, the approximation and exact certificates can be evaluated in complexity independent of the underlying finite element discretization. We demonstrate the technique in two numerical examples: a one-dimensional reaction–diffusion problem with a parametrized diffusivity constant; a planar linear elasticity problem with a geometry deformation. We confirm in both cases that the method produces guaranteed upper and lower bounds of the energy at any parameter value, for any finite element discretization, and for any reduced basis approximation. •Reduced basis method that provides rigorous bounds of the exact PDE energy.•Upper bound computation is based on variational argument.•Lower bound computation is based on complementary variational principle.•Bound evaluation permits offline–online computational decomposition.</description><subject>a posteriori error bound</subject><subject>Appeals</subject><subject>Approximation</subject><subject>Coercive force</subject><subject>Complementary variational principle</subject><subject>Construction standards</subject><subject>Discretization</subject><subject>Lower bounds</subject><subject>Mathematical analysis</subject><subject>Mathematical models</subject><subject>Partial differential equations</subject><subject>Reduced basis</subject><issn>0045-7825</issn><issn>1879-2138</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><recordid>eNp9kDtPwzAUhS0EEqXwA9g8siTYcR6OmKqKl1SJBWbLub5WXSV1azuF_ntSlZmz3OV8VzofIfec5Zzx-nGTw6DzgvEqZzxnTFyQGZdNmxVcyEsyY6ysskYW1TW5iXHDpkhezIha0IBmBDS009FFOmBae0O_XVpT_NGQsuj7MTm_pYAhOetAJ4zU-kBjQm2ONB6HiQoOKHgM4A5IcT_qExNvyZXVfcS7vzsnXy_Pn8u3bPXx-r5crDIQgqVM2kKWqGttoLRgOWuxFQZAFKIynS2FNq02ZYe6Ad02BVioy07Irqg1SJRiTh7Of3fB70eMSQ0uAva93qIfo-INa5tKNpJNVX6uQvAxBrRqF9ygw1Fxpk4y1UZNMtVJpmJcTTIn5unM4LTh4DCoCA63kzYXEJIy3v1D_wIYr3_J</recordid><startdate>20150415</startdate><enddate>20150415</enddate><creator>Yano, Masayuki</creator><general>Elsevier B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20150415</creationdate><title>A reduced basis method with exact-solution certificates for steady symmetric coercive equations</title><author>Yano, Masayuki</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c330t-8f284ea6adc4fcf109e93dcc3235dbf43ad9ad4bea7ca972cfc64b38b26ac8e83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>a posteriori error bound</topic><topic>Appeals</topic><topic>Approximation</topic><topic>Coercive force</topic><topic>Complementary variational principle</topic><topic>Construction standards</topic><topic>Discretization</topic><topic>Lower bounds</topic><topic>Mathematical analysis</topic><topic>Mathematical models</topic><topic>Partial differential equations</topic><topic>Reduced basis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yano, Masayuki</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Computer methods in applied mechanics and engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yano, Masayuki</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A reduced basis method with exact-solution certificates for steady symmetric coercive equations</atitle><jtitle>Computer methods in applied mechanics and engineering</jtitle><date>2015-04-15</date><risdate>2015</risdate><volume>287</volume><spage>290</spage><epage>309</epage><pages>290-309</pages><issn>0045-7825</issn><eissn>1879-2138</eissn><abstract>We introduce a reduced basis method that computes rigorous upper and lower bounds of the energy associated with the infinite-dimensional weak solution of parametrized steady symmetric coercive partial differential equations with piecewise polynomial forcing and operators that admit decompositions that are affine in functions of parameters. The construction of the upper bound appeals to the standard primal variational argument; the construction of the lower bound appeals to the complementary variational principle. We identify algebraic conditions for the reduced basis approximation of the dual variable that results in an exact satisfaction of the dual feasibility conditions and hence a rigorous lower bound. The formulation permits an offline–online computational decomposition such that, in the online stage, the approximation and exact certificates can be evaluated in complexity independent of the underlying finite element discretization. We demonstrate the technique in two numerical examples: a one-dimensional reaction–diffusion problem with a parametrized diffusivity constant; a planar linear elasticity problem with a geometry deformation. We confirm in both cases that the method produces guaranteed upper and lower bounds of the energy at any parameter value, for any finite element discretization, and for any reduced basis approximation. •Reduced basis method that provides rigorous bounds of the exact PDE energy.•Upper bound computation is based on variational argument.•Lower bound computation is based on complementary variational principle.•Bound evaluation permits offline–online computational decomposition.</abstract><pub>Elsevier B.V</pub><doi>10.1016/j.cma.2015.01.003</doi><tpages>20</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0045-7825
ispartof Computer methods in applied mechanics and engineering, 2015-04, Vol.287, p.290-309
issn 0045-7825
1879-2138
language eng
recordid cdi_proquest_miscellaneous_1709758780
source Access via ScienceDirect (Elsevier)
subjects a posteriori error bound
Appeals
Approximation
Coercive force
Complementary variational principle
Construction standards
Discretization
Lower bounds
Mathematical analysis
Mathematical models
Partial differential equations
Reduced basis
title A reduced basis method with exact-solution certificates for steady symmetric coercive equations
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-18T10%3A31%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20reduced%20basis%20method%20with%20exact-solution%20certificates%20for%20steady%20symmetric%20coercive%20equations&rft.jtitle=Computer%20methods%20in%20applied%20mechanics%20and%20engineering&rft.au=Yano,%20Masayuki&rft.date=2015-04-15&rft.volume=287&rft.spage=290&rft.epage=309&rft.pages=290-309&rft.issn=0045-7825&rft.eissn=1879-2138&rft_id=info:doi/10.1016/j.cma.2015.01.003&rft_dat=%3Cproquest_cross%3E1709758780%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1709758780&rft_id=info:pmid/&rft_els_id=S0045782515000043&rfr_iscdi=true