Effect of microgrooved surface topography on osteoblast maturation and protein adsorption

Microgrooved surfaces have been used extensively to influence cell contact guidance. Guiding cell growth, extracellular matrix deposition, and mineralization is important for bone implant longevity. In this study, we investigated the osteoblast response to microgrooved metallic surfaces in serum‐sup...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of biomedical materials research. Part A 2015-08, Vol.103 (8), p.2689-2700
Hauptverfasser: De Luca, Alba C., Zink, Mareike, Weidt, Astrid, Mayr, Stefan G., Markaki, Athina E.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2700
container_issue 8
container_start_page 2689
container_title Journal of biomedical materials research. Part A
container_volume 103
creator De Luca, Alba C.
Zink, Mareike
Weidt, Astrid
Mayr, Stefan G.
Markaki, Athina E.
description Microgrooved surfaces have been used extensively to influence cell contact guidance. Guiding cell growth, extracellular matrix deposition, and mineralization is important for bone implant longevity. In this study, we investigated the osteoblast response to microgrooved metallic surfaces in serum‐supplemented medium. Groove spacing was comparable with the spread osteoblast size. Focal adhesions were observed to confine to the intervening ridge/groove boundaries. Osteoblasts bridged over the grooves and were unable to conform to the concave shape of the underlying grooves. Microgrooved surfaces induced higher osteoblast proliferation and metabolic activity after 14 days in osteogenic medium compared with as‐received surfaces, resulting in higher mineralization and alignment of cell‐secreted collagen after 28 days. To establish whether preferential cell attachment at the ridge/groove boundaries was influenced by the adhesion proteins contained in the serum‐supplemented media, fluorescently labeled fibronectin was adsorbed onto the microgrooved substrates at low concentrations, mimicking the concentrations found in blood serum. Fibronectin was found to selectively adsorb onto the ridge/groove boundaries, the osteoblast focal adhesion sites, suggesting that protein adsorption may have influenced the cell attachment pattern. © 2015 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 103A: 2689–2700, 2015.
doi_str_mv 10.1002/jbm.a.35407
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1709758247</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1709758247</sourcerecordid><originalsourceid>FETCH-LOGICAL-c6367-a9a02290f8a86b3a393859cfca593dc8a623c089452628187735e12e7c1333bd3</originalsourceid><addsrcrecordid>eNqNkc1P20AQxVcVqAlpT70jS1yQkMN-eL-OIUqhCMSlPfS0Gq_XxZGdNbs2Vf57Nk3aQw_AaZ6efnqamYfQF4LnBGN6uS67OcwZL7D8gKaEc5oXWvCjnS50zqgWE3QS4zrBAnP6EU0oFwxzIabo56qunR0yX2ddY4P_Fbx_dlUWx1CDddng--RB_7jN_CbzcXC-bCEOWQfDGGBokgubKuuDH1yTdBV96Hf2J3RcQxvd58OcoR9fV9-XN_ndw_W35eIut4IJmYMGTKnGtQIlSgZMM8W1rS1wzSqrQFBmsdIFp4IqoqRk3BHqpCWMsbJiM3S-z00rPI0uDqZronVtCxvnx2iIxFpyRQv5HpQUUgqB30aFTlszQnlCz_5D134Mm3TzjiJcKJxOmaGLPZWeHGNwtelD00HYGoLNrkeTejRg_vSY6NND5lh2rvrH_i0uAXQP_G5at30ty9xe3S_2qS9NBqcD</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1691568059</pqid></control><display><type>article</type><title>Effect of microgrooved surface topography on osteoblast maturation and protein adsorption</title><source>MEDLINE</source><source>Wiley Online Library Journals Frontfile Complete</source><creator>De Luca, Alba C. ; Zink, Mareike ; Weidt, Astrid ; Mayr, Stefan G. ; Markaki, Athina E.</creator><creatorcontrib>De Luca, Alba C. ; Zink, Mareike ; Weidt, Astrid ; Mayr, Stefan G. ; Markaki, Athina E.</creatorcontrib><description>Microgrooved surfaces have been used extensively to influence cell contact guidance. Guiding cell growth, extracellular matrix deposition, and mineralization is important for bone implant longevity. In this study, we investigated the osteoblast response to microgrooved metallic surfaces in serum‐supplemented medium. Groove spacing was comparable with the spread osteoblast size. Focal adhesions were observed to confine to the intervening ridge/groove boundaries. Osteoblasts bridged over the grooves and were unable to conform to the concave shape of the underlying grooves. Microgrooved surfaces induced higher osteoblast proliferation and metabolic activity after 14 days in osteogenic medium compared with as‐received surfaces, resulting in higher mineralization and alignment of cell‐secreted collagen after 28 days. To establish whether preferential cell attachment at the ridge/groove boundaries was influenced by the adhesion proteins contained in the serum‐supplemented media, fluorescently labeled fibronectin was adsorbed onto the microgrooved substrates at low concentrations, mimicking the concentrations found in blood serum. Fibronectin was found to selectively adsorb onto the ridge/groove boundaries, the osteoblast focal adhesion sites, suggesting that protein adsorption may have influenced the cell attachment pattern. © 2015 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 103A: 2689–2700, 2015.</description><identifier>ISSN: 1549-3296</identifier><identifier>EISSN: 1552-4965</identifier><identifier>DOI: 10.1002/jbm.a.35407</identifier><identifier>PMID: 25630566</identifier><language>eng</language><publisher>United States: Wiley Subscription Services, Inc</publisher><subject>Adhesion ; Adsorption ; Biocompatibility ; Biomedical materials ; Boundaries ; contact guidance ; fibronectin ; grooved substrates ; Grooves ; osteoblast cells ; Osteoblasts - cytology ; Osteoblasts - metabolism ; Protein adsorption ; Proteins - metabolism ; Ridges ; Surface chemistry ; Surface Properties ; surface topography</subject><ispartof>Journal of biomedical materials research. Part A, 2015-08, Vol.103 (8), p.2689-2700</ispartof><rights>2015 Wiley Periodicals, Inc.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c6367-a9a02290f8a86b3a393859cfca593dc8a623c089452628187735e12e7c1333bd3</citedby><cites>FETCH-LOGICAL-c6367-a9a02290f8a86b3a393859cfca593dc8a623c089452628187735e12e7c1333bd3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fjbm.a.35407$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fjbm.a.35407$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,777,781,1412,27905,27906,45555,45556</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/25630566$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>De Luca, Alba C.</creatorcontrib><creatorcontrib>Zink, Mareike</creatorcontrib><creatorcontrib>Weidt, Astrid</creatorcontrib><creatorcontrib>Mayr, Stefan G.</creatorcontrib><creatorcontrib>Markaki, Athina E.</creatorcontrib><title>Effect of microgrooved surface topography on osteoblast maturation and protein adsorption</title><title>Journal of biomedical materials research. Part A</title><addtitle>J Biomed Mater Res A</addtitle><description>Microgrooved surfaces have been used extensively to influence cell contact guidance. Guiding cell growth, extracellular matrix deposition, and mineralization is important for bone implant longevity. In this study, we investigated the osteoblast response to microgrooved metallic surfaces in serum‐supplemented medium. Groove spacing was comparable with the spread osteoblast size. Focal adhesions were observed to confine to the intervening ridge/groove boundaries. Osteoblasts bridged over the grooves and were unable to conform to the concave shape of the underlying grooves. Microgrooved surfaces induced higher osteoblast proliferation and metabolic activity after 14 days in osteogenic medium compared with as‐received surfaces, resulting in higher mineralization and alignment of cell‐secreted collagen after 28 days. To establish whether preferential cell attachment at the ridge/groove boundaries was influenced by the adhesion proteins contained in the serum‐supplemented media, fluorescently labeled fibronectin was adsorbed onto the microgrooved substrates at low concentrations, mimicking the concentrations found in blood serum. Fibronectin was found to selectively adsorb onto the ridge/groove boundaries, the osteoblast focal adhesion sites, suggesting that protein adsorption may have influenced the cell attachment pattern. © 2015 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 103A: 2689–2700, 2015.</description><subject>Adhesion</subject><subject>Adsorption</subject><subject>Biocompatibility</subject><subject>Biomedical materials</subject><subject>Boundaries</subject><subject>contact guidance</subject><subject>fibronectin</subject><subject>grooved substrates</subject><subject>Grooves</subject><subject>osteoblast cells</subject><subject>Osteoblasts - cytology</subject><subject>Osteoblasts - metabolism</subject><subject>Protein adsorption</subject><subject>Proteins - metabolism</subject><subject>Ridges</subject><subject>Surface chemistry</subject><subject>Surface Properties</subject><subject>surface topography</subject><issn>1549-3296</issn><issn>1552-4965</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqNkc1P20AQxVcVqAlpT70jS1yQkMN-eL-OIUqhCMSlPfS0Gq_XxZGdNbs2Vf57Nk3aQw_AaZ6efnqamYfQF4LnBGN6uS67OcwZL7D8gKaEc5oXWvCjnS50zqgWE3QS4zrBAnP6EU0oFwxzIabo56qunR0yX2ddY4P_Fbx_dlUWx1CDddng--RB_7jN_CbzcXC-bCEOWQfDGGBokgubKuuDH1yTdBV96Hf2J3RcQxvd58OcoR9fV9-XN_ndw_W35eIut4IJmYMGTKnGtQIlSgZMM8W1rS1wzSqrQFBmsdIFp4IqoqRk3BHqpCWMsbJiM3S-z00rPI0uDqZronVtCxvnx2iIxFpyRQv5HpQUUgqB30aFTlszQnlCz_5D134Mm3TzjiJcKJxOmaGLPZWeHGNwtelD00HYGoLNrkeTejRg_vSY6NND5lh2rvrH_i0uAXQP_G5at30ty9xe3S_2qS9NBqcD</recordid><startdate>201508</startdate><enddate>201508</enddate><creator>De Luca, Alba C.</creator><creator>Zink, Mareike</creator><creator>Weidt, Astrid</creator><creator>Mayr, Stefan G.</creator><creator>Markaki, Athina E.</creator><general>Wiley Subscription Services, Inc</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7TA</scope><scope>7TB</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>H8G</scope><scope>JG9</scope><scope>JQ2</scope><scope>K9.</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>P64</scope><scope>7X8</scope></search><sort><creationdate>201508</creationdate><title>Effect of microgrooved surface topography on osteoblast maturation and protein adsorption</title><author>De Luca, Alba C. ; Zink, Mareike ; Weidt, Astrid ; Mayr, Stefan G. ; Markaki, Athina E.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c6367-a9a02290f8a86b3a393859cfca593dc8a623c089452628187735e12e7c1333bd3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Adhesion</topic><topic>Adsorption</topic><topic>Biocompatibility</topic><topic>Biomedical materials</topic><topic>Boundaries</topic><topic>contact guidance</topic><topic>fibronectin</topic><topic>grooved substrates</topic><topic>Grooves</topic><topic>osteoblast cells</topic><topic>Osteoblasts - cytology</topic><topic>Osteoblasts - metabolism</topic><topic>Protein adsorption</topic><topic>Proteins - metabolism</topic><topic>Ridges</topic><topic>Surface chemistry</topic><topic>Surface Properties</topic><topic>surface topography</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>De Luca, Alba C.</creatorcontrib><creatorcontrib>Zink, Mareike</creatorcontrib><creatorcontrib>Weidt, Astrid</creatorcontrib><creatorcontrib>Mayr, Stefan G.</creatorcontrib><creatorcontrib>Markaki, Athina E.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Journal of biomedical materials research. Part A</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>De Luca, Alba C.</au><au>Zink, Mareike</au><au>Weidt, Astrid</au><au>Mayr, Stefan G.</au><au>Markaki, Athina E.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Effect of microgrooved surface topography on osteoblast maturation and protein adsorption</atitle><jtitle>Journal of biomedical materials research. Part A</jtitle><addtitle>J Biomed Mater Res A</addtitle><date>2015-08</date><risdate>2015</risdate><volume>103</volume><issue>8</issue><spage>2689</spage><epage>2700</epage><pages>2689-2700</pages><issn>1549-3296</issn><eissn>1552-4965</eissn><abstract>Microgrooved surfaces have been used extensively to influence cell contact guidance. Guiding cell growth, extracellular matrix deposition, and mineralization is important for bone implant longevity. In this study, we investigated the osteoblast response to microgrooved metallic surfaces in serum‐supplemented medium. Groove spacing was comparable with the spread osteoblast size. Focal adhesions were observed to confine to the intervening ridge/groove boundaries. Osteoblasts bridged over the grooves and were unable to conform to the concave shape of the underlying grooves. Microgrooved surfaces induced higher osteoblast proliferation and metabolic activity after 14 days in osteogenic medium compared with as‐received surfaces, resulting in higher mineralization and alignment of cell‐secreted collagen after 28 days. To establish whether preferential cell attachment at the ridge/groove boundaries was influenced by the adhesion proteins contained in the serum‐supplemented media, fluorescently labeled fibronectin was adsorbed onto the microgrooved substrates at low concentrations, mimicking the concentrations found in blood serum. Fibronectin was found to selectively adsorb onto the ridge/groove boundaries, the osteoblast focal adhesion sites, suggesting that protein adsorption may have influenced the cell attachment pattern. © 2015 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 103A: 2689–2700, 2015.</abstract><cop>United States</cop><pub>Wiley Subscription Services, Inc</pub><pmid>25630566</pmid><doi>10.1002/jbm.a.35407</doi><tpages>12</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1549-3296
ispartof Journal of biomedical materials research. Part A, 2015-08, Vol.103 (8), p.2689-2700
issn 1549-3296
1552-4965
language eng
recordid cdi_proquest_miscellaneous_1709758247
source MEDLINE; Wiley Online Library Journals Frontfile Complete
subjects Adhesion
Adsorption
Biocompatibility
Biomedical materials
Boundaries
contact guidance
fibronectin
grooved substrates
Grooves
osteoblast cells
Osteoblasts - cytology
Osteoblasts - metabolism
Protein adsorption
Proteins - metabolism
Ridges
Surface chemistry
Surface Properties
surface topography
title Effect of microgrooved surface topography on osteoblast maturation and protein adsorption
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-18T18%3A13%3A57IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Effect%20of%20microgrooved%20surface%20topography%20on%20osteoblast%20maturation%20and%20protein%20adsorption&rft.jtitle=Journal%20of%20biomedical%20materials%20research.%20Part%20A&rft.au=De%20Luca,%20Alba%20C.&rft.date=2015-08&rft.volume=103&rft.issue=8&rft.spage=2689&rft.epage=2700&rft.pages=2689-2700&rft.issn=1549-3296&rft.eissn=1552-4965&rft_id=info:doi/10.1002/jbm.a.35407&rft_dat=%3Cproquest_cross%3E1709758247%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1691568059&rft_id=info:pmid/25630566&rfr_iscdi=true