Effect of microgrooved surface topography on osteoblast maturation and protein adsorption
Microgrooved surfaces have been used extensively to influence cell contact guidance. Guiding cell growth, extracellular matrix deposition, and mineralization is important for bone implant longevity. In this study, we investigated the osteoblast response to microgrooved metallic surfaces in serum‐sup...
Gespeichert in:
Veröffentlicht in: | Journal of biomedical materials research. Part A 2015-08, Vol.103 (8), p.2689-2700 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 2700 |
---|---|
container_issue | 8 |
container_start_page | 2689 |
container_title | Journal of biomedical materials research. Part A |
container_volume | 103 |
creator | De Luca, Alba C. Zink, Mareike Weidt, Astrid Mayr, Stefan G. Markaki, Athina E. |
description | Microgrooved surfaces have been used extensively to influence cell contact guidance. Guiding cell growth, extracellular matrix deposition, and mineralization is important for bone implant longevity. In this study, we investigated the osteoblast response to microgrooved metallic surfaces in serum‐supplemented medium. Groove spacing was comparable with the spread osteoblast size. Focal adhesions were observed to confine to the intervening ridge/groove boundaries. Osteoblasts bridged over the grooves and were unable to conform to the concave shape of the underlying grooves. Microgrooved surfaces induced higher osteoblast proliferation and metabolic activity after 14 days in osteogenic medium compared with as‐received surfaces, resulting in higher mineralization and alignment of cell‐secreted collagen after 28 days. To establish whether preferential cell attachment at the ridge/groove boundaries was influenced by the adhesion proteins contained in the serum‐supplemented media, fluorescently labeled fibronectin was adsorbed onto the microgrooved substrates at low concentrations, mimicking the concentrations found in blood serum. Fibronectin was found to selectively adsorb onto the ridge/groove boundaries, the osteoblast focal adhesion sites, suggesting that protein adsorption may have influenced the cell attachment pattern. © 2015 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 103A: 2689–2700, 2015. |
doi_str_mv | 10.1002/jbm.a.35407 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1709758247</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1709758247</sourcerecordid><originalsourceid>FETCH-LOGICAL-c6367-a9a02290f8a86b3a393859cfca593dc8a623c089452628187735e12e7c1333bd3</originalsourceid><addsrcrecordid>eNqNkc1P20AQxVcVqAlpT70jS1yQkMN-eL-OIUqhCMSlPfS0Gq_XxZGdNbs2Vf57Nk3aQw_AaZ6efnqamYfQF4LnBGN6uS67OcwZL7D8gKaEc5oXWvCjnS50zqgWE3QS4zrBAnP6EU0oFwxzIabo56qunR0yX2ddY4P_Fbx_dlUWx1CDddng--RB_7jN_CbzcXC-bCEOWQfDGGBokgubKuuDH1yTdBV96Hf2J3RcQxvd58OcoR9fV9-XN_ndw_W35eIut4IJmYMGTKnGtQIlSgZMM8W1rS1wzSqrQFBmsdIFp4IqoqRk3BHqpCWMsbJiM3S-z00rPI0uDqZronVtCxvnx2iIxFpyRQv5HpQUUgqB30aFTlszQnlCz_5D134Mm3TzjiJcKJxOmaGLPZWeHGNwtelD00HYGoLNrkeTejRg_vSY6NND5lh2rvrH_i0uAXQP_G5at30ty9xe3S_2qS9NBqcD</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1691568059</pqid></control><display><type>article</type><title>Effect of microgrooved surface topography on osteoblast maturation and protein adsorption</title><source>MEDLINE</source><source>Wiley Online Library Journals Frontfile Complete</source><creator>De Luca, Alba C. ; Zink, Mareike ; Weidt, Astrid ; Mayr, Stefan G. ; Markaki, Athina E.</creator><creatorcontrib>De Luca, Alba C. ; Zink, Mareike ; Weidt, Astrid ; Mayr, Stefan G. ; Markaki, Athina E.</creatorcontrib><description>Microgrooved surfaces have been used extensively to influence cell contact guidance. Guiding cell growth, extracellular matrix deposition, and mineralization is important for bone implant longevity. In this study, we investigated the osteoblast response to microgrooved metallic surfaces in serum‐supplemented medium. Groove spacing was comparable with the spread osteoblast size. Focal adhesions were observed to confine to the intervening ridge/groove boundaries. Osteoblasts bridged over the grooves and were unable to conform to the concave shape of the underlying grooves. Microgrooved surfaces induced higher osteoblast proliferation and metabolic activity after 14 days in osteogenic medium compared with as‐received surfaces, resulting in higher mineralization and alignment of cell‐secreted collagen after 28 days. To establish whether preferential cell attachment at the ridge/groove boundaries was influenced by the adhesion proteins contained in the serum‐supplemented media, fluorescently labeled fibronectin was adsorbed onto the microgrooved substrates at low concentrations, mimicking the concentrations found in blood serum. Fibronectin was found to selectively adsorb onto the ridge/groove boundaries, the osteoblast focal adhesion sites, suggesting that protein adsorption may have influenced the cell attachment pattern. © 2015 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 103A: 2689–2700, 2015.</description><identifier>ISSN: 1549-3296</identifier><identifier>EISSN: 1552-4965</identifier><identifier>DOI: 10.1002/jbm.a.35407</identifier><identifier>PMID: 25630566</identifier><language>eng</language><publisher>United States: Wiley Subscription Services, Inc</publisher><subject>Adhesion ; Adsorption ; Biocompatibility ; Biomedical materials ; Boundaries ; contact guidance ; fibronectin ; grooved substrates ; Grooves ; osteoblast cells ; Osteoblasts - cytology ; Osteoblasts - metabolism ; Protein adsorption ; Proteins - metabolism ; Ridges ; Surface chemistry ; Surface Properties ; surface topography</subject><ispartof>Journal of biomedical materials research. Part A, 2015-08, Vol.103 (8), p.2689-2700</ispartof><rights>2015 Wiley Periodicals, Inc.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c6367-a9a02290f8a86b3a393859cfca593dc8a623c089452628187735e12e7c1333bd3</citedby><cites>FETCH-LOGICAL-c6367-a9a02290f8a86b3a393859cfca593dc8a623c089452628187735e12e7c1333bd3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fjbm.a.35407$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fjbm.a.35407$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,777,781,1412,27905,27906,45555,45556</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/25630566$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>De Luca, Alba C.</creatorcontrib><creatorcontrib>Zink, Mareike</creatorcontrib><creatorcontrib>Weidt, Astrid</creatorcontrib><creatorcontrib>Mayr, Stefan G.</creatorcontrib><creatorcontrib>Markaki, Athina E.</creatorcontrib><title>Effect of microgrooved surface topography on osteoblast maturation and protein adsorption</title><title>Journal of biomedical materials research. Part A</title><addtitle>J Biomed Mater Res A</addtitle><description>Microgrooved surfaces have been used extensively to influence cell contact guidance. Guiding cell growth, extracellular matrix deposition, and mineralization is important for bone implant longevity. In this study, we investigated the osteoblast response to microgrooved metallic surfaces in serum‐supplemented medium. Groove spacing was comparable with the spread osteoblast size. Focal adhesions were observed to confine to the intervening ridge/groove boundaries. Osteoblasts bridged over the grooves and were unable to conform to the concave shape of the underlying grooves. Microgrooved surfaces induced higher osteoblast proliferation and metabolic activity after 14 days in osteogenic medium compared with as‐received surfaces, resulting in higher mineralization and alignment of cell‐secreted collagen after 28 days. To establish whether preferential cell attachment at the ridge/groove boundaries was influenced by the adhesion proteins contained in the serum‐supplemented media, fluorescently labeled fibronectin was adsorbed onto the microgrooved substrates at low concentrations, mimicking the concentrations found in blood serum. Fibronectin was found to selectively adsorb onto the ridge/groove boundaries, the osteoblast focal adhesion sites, suggesting that protein adsorption may have influenced the cell attachment pattern. © 2015 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 103A: 2689–2700, 2015.</description><subject>Adhesion</subject><subject>Adsorption</subject><subject>Biocompatibility</subject><subject>Biomedical materials</subject><subject>Boundaries</subject><subject>contact guidance</subject><subject>fibronectin</subject><subject>grooved substrates</subject><subject>Grooves</subject><subject>osteoblast cells</subject><subject>Osteoblasts - cytology</subject><subject>Osteoblasts - metabolism</subject><subject>Protein adsorption</subject><subject>Proteins - metabolism</subject><subject>Ridges</subject><subject>Surface chemistry</subject><subject>Surface Properties</subject><subject>surface topography</subject><issn>1549-3296</issn><issn>1552-4965</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqNkc1P20AQxVcVqAlpT70jS1yQkMN-eL-OIUqhCMSlPfS0Gq_XxZGdNbs2Vf57Nk3aQw_AaZ6efnqamYfQF4LnBGN6uS67OcwZL7D8gKaEc5oXWvCjnS50zqgWE3QS4zrBAnP6EU0oFwxzIabo56qunR0yX2ddY4P_Fbx_dlUWx1CDddng--RB_7jN_CbzcXC-bCEOWQfDGGBokgubKuuDH1yTdBV96Hf2J3RcQxvd58OcoR9fV9-XN_ndw_W35eIut4IJmYMGTKnGtQIlSgZMM8W1rS1wzSqrQFBmsdIFp4IqoqRk3BHqpCWMsbJiM3S-z00rPI0uDqZronVtCxvnx2iIxFpyRQv5HpQUUgqB30aFTlszQnlCz_5D134Mm3TzjiJcKJxOmaGLPZWeHGNwtelD00HYGoLNrkeTejRg_vSY6NND5lh2rvrH_i0uAXQP_G5at30ty9xe3S_2qS9NBqcD</recordid><startdate>201508</startdate><enddate>201508</enddate><creator>De Luca, Alba C.</creator><creator>Zink, Mareike</creator><creator>Weidt, Astrid</creator><creator>Mayr, Stefan G.</creator><creator>Markaki, Athina E.</creator><general>Wiley Subscription Services, Inc</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7TA</scope><scope>7TB</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>H8G</scope><scope>JG9</scope><scope>JQ2</scope><scope>K9.</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>P64</scope><scope>7X8</scope></search><sort><creationdate>201508</creationdate><title>Effect of microgrooved surface topography on osteoblast maturation and protein adsorption</title><author>De Luca, Alba C. ; Zink, Mareike ; Weidt, Astrid ; Mayr, Stefan G. ; Markaki, Athina E.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c6367-a9a02290f8a86b3a393859cfca593dc8a623c089452628187735e12e7c1333bd3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Adhesion</topic><topic>Adsorption</topic><topic>Biocompatibility</topic><topic>Biomedical materials</topic><topic>Boundaries</topic><topic>contact guidance</topic><topic>fibronectin</topic><topic>grooved substrates</topic><topic>Grooves</topic><topic>osteoblast cells</topic><topic>Osteoblasts - cytology</topic><topic>Osteoblasts - metabolism</topic><topic>Protein adsorption</topic><topic>Proteins - metabolism</topic><topic>Ridges</topic><topic>Surface chemistry</topic><topic>Surface Properties</topic><topic>surface topography</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>De Luca, Alba C.</creatorcontrib><creatorcontrib>Zink, Mareike</creatorcontrib><creatorcontrib>Weidt, Astrid</creatorcontrib><creatorcontrib>Mayr, Stefan G.</creatorcontrib><creatorcontrib>Markaki, Athina E.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Journal of biomedical materials research. Part A</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>De Luca, Alba C.</au><au>Zink, Mareike</au><au>Weidt, Astrid</au><au>Mayr, Stefan G.</au><au>Markaki, Athina E.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Effect of microgrooved surface topography on osteoblast maturation and protein adsorption</atitle><jtitle>Journal of biomedical materials research. Part A</jtitle><addtitle>J Biomed Mater Res A</addtitle><date>2015-08</date><risdate>2015</risdate><volume>103</volume><issue>8</issue><spage>2689</spage><epage>2700</epage><pages>2689-2700</pages><issn>1549-3296</issn><eissn>1552-4965</eissn><abstract>Microgrooved surfaces have been used extensively to influence cell contact guidance. Guiding cell growth, extracellular matrix deposition, and mineralization is important for bone implant longevity. In this study, we investigated the osteoblast response to microgrooved metallic surfaces in serum‐supplemented medium. Groove spacing was comparable with the spread osteoblast size. Focal adhesions were observed to confine to the intervening ridge/groove boundaries. Osteoblasts bridged over the grooves and were unable to conform to the concave shape of the underlying grooves. Microgrooved surfaces induced higher osteoblast proliferation and metabolic activity after 14 days in osteogenic medium compared with as‐received surfaces, resulting in higher mineralization and alignment of cell‐secreted collagen after 28 days. To establish whether preferential cell attachment at the ridge/groove boundaries was influenced by the adhesion proteins contained in the serum‐supplemented media, fluorescently labeled fibronectin was adsorbed onto the microgrooved substrates at low concentrations, mimicking the concentrations found in blood serum. Fibronectin was found to selectively adsorb onto the ridge/groove boundaries, the osteoblast focal adhesion sites, suggesting that protein adsorption may have influenced the cell attachment pattern. © 2015 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 103A: 2689–2700, 2015.</abstract><cop>United States</cop><pub>Wiley Subscription Services, Inc</pub><pmid>25630566</pmid><doi>10.1002/jbm.a.35407</doi><tpages>12</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1549-3296 |
ispartof | Journal of biomedical materials research. Part A, 2015-08, Vol.103 (8), p.2689-2700 |
issn | 1549-3296 1552-4965 |
language | eng |
recordid | cdi_proquest_miscellaneous_1709758247 |
source | MEDLINE; Wiley Online Library Journals Frontfile Complete |
subjects | Adhesion Adsorption Biocompatibility Biomedical materials Boundaries contact guidance fibronectin grooved substrates Grooves osteoblast cells Osteoblasts - cytology Osteoblasts - metabolism Protein adsorption Proteins - metabolism Ridges Surface chemistry Surface Properties surface topography |
title | Effect of microgrooved surface topography on osteoblast maturation and protein adsorption |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-18T18%3A13%3A57IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Effect%20of%20microgrooved%20surface%20topography%20on%20osteoblast%20maturation%20and%20protein%20adsorption&rft.jtitle=Journal%20of%20biomedical%20materials%20research.%20Part%20A&rft.au=De%20Luca,%20Alba%20C.&rft.date=2015-08&rft.volume=103&rft.issue=8&rft.spage=2689&rft.epage=2700&rft.pages=2689-2700&rft.issn=1549-3296&rft.eissn=1552-4965&rft_id=info:doi/10.1002/jbm.a.35407&rft_dat=%3Cproquest_cross%3E1709758247%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1691568059&rft_id=info:pmid/25630566&rfr_iscdi=true |