Rigorous design of distillation columns using surrogate models based on Kriging interpolation

The economic design of a distillation column or distillation sequences is a challenging problem that has been addressed by superstructure approaches. However, these methods have not been widely used because they lead to mixed‐integer nonlinear programs that are hard to solve, and require complex ini...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:AIChE journal 2015-07, Vol.61 (7), p.2169-2187
Hauptverfasser: Quirante, Natalia, Javaloyes, Juan, Caballero, José A.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2187
container_issue 7
container_start_page 2169
container_title AIChE journal
container_volume 61
creator Quirante, Natalia
Javaloyes, Juan
Caballero, José A.
description The economic design of a distillation column or distillation sequences is a challenging problem that has been addressed by superstructure approaches. However, these methods have not been widely used because they lead to mixed‐integer nonlinear programs that are hard to solve, and require complex initialization procedures. In this article, we propose to address this challenging problem by substituting the distillation columns by Kriging‐based surrogate models generated via state of the art distillation models. We study different columns with increasing difficulty, and show that it is possible to get accurate Kriging‐based surrogate models. The optimization strategy ensures that convergence to a local optimum is guaranteed for numerical noise‐free models. For distillation columns (slightly noisy systems), Karush–Kuhn–Tucker optimality conditions cannot be tested directly on the actual model, but still we can guarantee a local minimum in a trust region of the surrogate model that contains the actual local minimum. © 2015 American Institute of Chemical Engineers AIChE J, 61: 2169–2187, 2015
doi_str_mv 10.1002/aic.14798
format Article
fullrecord <record><control><sourceid>proquest_wiley</sourceid><recordid>TN_cdi_proquest_miscellaneous_1709750053</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3725906571</sourcerecordid><originalsourceid>FETCH-LOGICAL-g4368-1f92651a00a7a822759725b3b3747abcdd0a82e81237ab98b86664f2259e6c6d3</originalsourceid><addsrcrecordid>eNpdkF9LwzAUxYMoOKcPfoOAL750y58maR_n0DkcE0QdCBLSNi2ZXTOTFt23N1vFB5_uvYffudx7ALjEaIQRImNl8hGORZocgQFmsYhYitgxGCCEcBQEfArOvF-HiYiEDMD7k6mss52HhfamaqAtYWF8a-patcY2MLd1t2k87LxpKug752ylWg03ttC1h5nyuoCBe3Cm2hOmabXb2t59Dk5KVXt98VuH4OXu9nl6Hy0eZ_PpZBFVMeVJhMuUcIYVQkqohBDBUkFYRjMqYqGyvChQkHWCCQ1jmmQJ5zwuCWGp5jkv6BBc93u3zn522rdyY3yuww-NDr9JLFAqGEKMBvTqH7q2nWvCdRLzFCNBCcKBGvfUl6n1Tm6d2Si3kxjJfcoypCwPKcvJfHpogiPqHSE8_f3nUO5DckEFk6vlTL7OVjdiyd6koD_hTYB6</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1691073201</pqid></control><display><type>article</type><title>Rigorous design of distillation columns using surrogate models based on Kriging interpolation</title><source>Wiley Journals</source><creator>Quirante, Natalia ; Javaloyes, Juan ; Caballero, José A.</creator><creatorcontrib>Quirante, Natalia ; Javaloyes, Juan ; Caballero, José A.</creatorcontrib><description>The economic design of a distillation column or distillation sequences is a challenging problem that has been addressed by superstructure approaches. However, these methods have not been widely used because they lead to mixed‐integer nonlinear programs that are hard to solve, and require complex initialization procedures. In this article, we propose to address this challenging problem by substituting the distillation columns by Kriging‐based surrogate models generated via state of the art distillation models. We study different columns with increasing difficulty, and show that it is possible to get accurate Kriging‐based surrogate models. The optimization strategy ensures that convergence to a local optimum is guaranteed for numerical noise‐free models. For distillation columns (slightly noisy systems), Karush–Kuhn–Tucker optimality conditions cannot be tested directly on the actual model, but still we can guarantee a local minimum in a trust region of the surrogate model that contains the actual local minimum. © 2015 American Institute of Chemical Engineers AIChE J, 61: 2169–2187, 2015</description><identifier>ISSN: 0001-1541</identifier><identifier>EISSN: 1547-5905</identifier><identifier>DOI: 10.1002/aic.14798</identifier><identifier>CODEN: AICEAC</identifier><language>eng</language><publisher>New York: Blackwell Publishing Ltd</publisher><subject>Chemical engineering ; Chemical engineers ; Convergence ; design (distillation columns) ; Design engineering ; Distillation ; Interpolation ; Kriging algorithm ; mathematical modeling ; Mathematical models ; Nonlinear programming ; Numerical analysis ; Optimization ; simulation ; Strategy ; Superstructures</subject><ispartof>AIChE journal, 2015-07, Vol.61 (7), p.2169-2187</ispartof><rights>2015 American Institute of Chemical Engineers</rights><rights>Copyright American Institute of Chemical Engineers Jul 2015</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Faic.14798$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Faic.14798$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,27924,27925,45574,45575</link.rule.ids></links><search><creatorcontrib>Quirante, Natalia</creatorcontrib><creatorcontrib>Javaloyes, Juan</creatorcontrib><creatorcontrib>Caballero, José A.</creatorcontrib><title>Rigorous design of distillation columns using surrogate models based on Kriging interpolation</title><title>AIChE journal</title><addtitle>AIChE J</addtitle><description>The economic design of a distillation column or distillation sequences is a challenging problem that has been addressed by superstructure approaches. However, these methods have not been widely used because they lead to mixed‐integer nonlinear programs that are hard to solve, and require complex initialization procedures. In this article, we propose to address this challenging problem by substituting the distillation columns by Kriging‐based surrogate models generated via state of the art distillation models. We study different columns with increasing difficulty, and show that it is possible to get accurate Kriging‐based surrogate models. The optimization strategy ensures that convergence to a local optimum is guaranteed for numerical noise‐free models. For distillation columns (slightly noisy systems), Karush–Kuhn–Tucker optimality conditions cannot be tested directly on the actual model, but still we can guarantee a local minimum in a trust region of the surrogate model that contains the actual local minimum. © 2015 American Institute of Chemical Engineers AIChE J, 61: 2169–2187, 2015</description><subject>Chemical engineering</subject><subject>Chemical engineers</subject><subject>Convergence</subject><subject>design (distillation columns)</subject><subject>Design engineering</subject><subject>Distillation</subject><subject>Interpolation</subject><subject>Kriging algorithm</subject><subject>mathematical modeling</subject><subject>Mathematical models</subject><subject>Nonlinear programming</subject><subject>Numerical analysis</subject><subject>Optimization</subject><subject>simulation</subject><subject>Strategy</subject><subject>Superstructures</subject><issn>0001-1541</issn><issn>1547-5905</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><recordid>eNpdkF9LwzAUxYMoOKcPfoOAL750y58maR_n0DkcE0QdCBLSNi2ZXTOTFt23N1vFB5_uvYffudx7ALjEaIQRImNl8hGORZocgQFmsYhYitgxGCCEcBQEfArOvF-HiYiEDMD7k6mss52HhfamaqAtYWF8a-patcY2MLd1t2k87LxpKug752ylWg03ttC1h5nyuoCBe3Cm2hOmabXb2t59Dk5KVXt98VuH4OXu9nl6Hy0eZ_PpZBFVMeVJhMuUcIYVQkqohBDBUkFYRjMqYqGyvChQkHWCCQ1jmmQJ5zwuCWGp5jkv6BBc93u3zn522rdyY3yuww-NDr9JLFAqGEKMBvTqH7q2nWvCdRLzFCNBCcKBGvfUl6n1Tm6d2Si3kxjJfcoypCwPKcvJfHpogiPqHSE8_f3nUO5DckEFk6vlTL7OVjdiyd6koD_hTYB6</recordid><startdate>201507</startdate><enddate>201507</enddate><creator>Quirante, Natalia</creator><creator>Javaloyes, Juan</creator><creator>Caballero, José A.</creator><general>Blackwell Publishing Ltd</general><general>American Institute of Chemical Engineers</general><scope>BSCLL</scope><scope>7ST</scope><scope>7U5</scope><scope>8FD</scope><scope>C1K</scope><scope>L7M</scope><scope>SOI</scope></search><sort><creationdate>201507</creationdate><title>Rigorous design of distillation columns using surrogate models based on Kriging interpolation</title><author>Quirante, Natalia ; Javaloyes, Juan ; Caballero, José A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-g4368-1f92651a00a7a822759725b3b3747abcdd0a82e81237ab98b86664f2259e6c6d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Chemical engineering</topic><topic>Chemical engineers</topic><topic>Convergence</topic><topic>design (distillation columns)</topic><topic>Design engineering</topic><topic>Distillation</topic><topic>Interpolation</topic><topic>Kriging algorithm</topic><topic>mathematical modeling</topic><topic>Mathematical models</topic><topic>Nonlinear programming</topic><topic>Numerical analysis</topic><topic>Optimization</topic><topic>simulation</topic><topic>Strategy</topic><topic>Superstructures</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Quirante, Natalia</creatorcontrib><creatorcontrib>Javaloyes, Juan</creatorcontrib><creatorcontrib>Caballero, José A.</creatorcontrib><collection>Istex</collection><collection>Environment Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Environment Abstracts</collection><jtitle>AIChE journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Quirante, Natalia</au><au>Javaloyes, Juan</au><au>Caballero, José A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Rigorous design of distillation columns using surrogate models based on Kriging interpolation</atitle><jtitle>AIChE journal</jtitle><addtitle>AIChE J</addtitle><date>2015-07</date><risdate>2015</risdate><volume>61</volume><issue>7</issue><spage>2169</spage><epage>2187</epage><pages>2169-2187</pages><issn>0001-1541</issn><eissn>1547-5905</eissn><coden>AICEAC</coden><abstract>The economic design of a distillation column or distillation sequences is a challenging problem that has been addressed by superstructure approaches. However, these methods have not been widely used because they lead to mixed‐integer nonlinear programs that are hard to solve, and require complex initialization procedures. In this article, we propose to address this challenging problem by substituting the distillation columns by Kriging‐based surrogate models generated via state of the art distillation models. We study different columns with increasing difficulty, and show that it is possible to get accurate Kriging‐based surrogate models. The optimization strategy ensures that convergence to a local optimum is guaranteed for numerical noise‐free models. For distillation columns (slightly noisy systems), Karush–Kuhn–Tucker optimality conditions cannot be tested directly on the actual model, but still we can guarantee a local minimum in a trust region of the surrogate model that contains the actual local minimum. © 2015 American Institute of Chemical Engineers AIChE J, 61: 2169–2187, 2015</abstract><cop>New York</cop><pub>Blackwell Publishing Ltd</pub><doi>10.1002/aic.14798</doi><tpages>19</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0001-1541
ispartof AIChE journal, 2015-07, Vol.61 (7), p.2169-2187
issn 0001-1541
1547-5905
language eng
recordid cdi_proquest_miscellaneous_1709750053
source Wiley Journals
subjects Chemical engineering
Chemical engineers
Convergence
design (distillation columns)
Design engineering
Distillation
Interpolation
Kriging algorithm
mathematical modeling
Mathematical models
Nonlinear programming
Numerical analysis
Optimization
simulation
Strategy
Superstructures
title Rigorous design of distillation columns using surrogate models based on Kriging interpolation
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T05%3A30%3A28IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_wiley&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Rigorous%20design%20of%20distillation%20columns%20using%20surrogate%20models%20based%20on%20Kriging%20interpolation&rft.jtitle=AIChE%20journal&rft.au=Quirante,%20Natalia&rft.date=2015-07&rft.volume=61&rft.issue=7&rft.spage=2169&rft.epage=2187&rft.pages=2169-2187&rft.issn=0001-1541&rft.eissn=1547-5905&rft.coden=AICEAC&rft_id=info:doi/10.1002/aic.14798&rft_dat=%3Cproquest_wiley%3E3725906571%3C/proquest_wiley%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1691073201&rft_id=info:pmid/&rfr_iscdi=true