Rigorous design of distillation columns using surrogate models based on Kriging interpolation
The economic design of a distillation column or distillation sequences is a challenging problem that has been addressed by superstructure approaches. However, these methods have not been widely used because they lead to mixed‐integer nonlinear programs that are hard to solve, and require complex ini...
Gespeichert in:
Veröffentlicht in: | AIChE journal 2015-07, Vol.61 (7), p.2169-2187 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 2187 |
---|---|
container_issue | 7 |
container_start_page | 2169 |
container_title | AIChE journal |
container_volume | 61 |
creator | Quirante, Natalia Javaloyes, Juan Caballero, José A. |
description | The economic design of a distillation column or distillation sequences is a challenging problem that has been addressed by superstructure approaches. However, these methods have not been widely used because they lead to mixed‐integer nonlinear programs that are hard to solve, and require complex initialization procedures. In this article, we propose to address this challenging problem by substituting the distillation columns by Kriging‐based surrogate models generated via state of the art distillation models. We study different columns with increasing difficulty, and show that it is possible to get accurate Kriging‐based surrogate models. The optimization strategy ensures that convergence to a local optimum is guaranteed for numerical noise‐free models. For distillation columns (slightly noisy systems), Karush–Kuhn–Tucker optimality conditions cannot be tested directly on the actual model, but still we can guarantee a local minimum in a trust region of the surrogate model that contains the actual local minimum. © 2015 American Institute of Chemical Engineers AIChE J, 61: 2169–2187, 2015 |
doi_str_mv | 10.1002/aic.14798 |
format | Article |
fullrecord | <record><control><sourceid>proquest_wiley</sourceid><recordid>TN_cdi_proquest_miscellaneous_1709750053</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3725906571</sourcerecordid><originalsourceid>FETCH-LOGICAL-g4368-1f92651a00a7a822759725b3b3747abcdd0a82e81237ab98b86664f2259e6c6d3</originalsourceid><addsrcrecordid>eNpdkF9LwzAUxYMoOKcPfoOAL750y58maR_n0DkcE0QdCBLSNi2ZXTOTFt23N1vFB5_uvYffudx7ALjEaIQRImNl8hGORZocgQFmsYhYitgxGCCEcBQEfArOvF-HiYiEDMD7k6mss52HhfamaqAtYWF8a-patcY2MLd1t2k87LxpKug752ylWg03ttC1h5nyuoCBe3Cm2hOmabXb2t59Dk5KVXt98VuH4OXu9nl6Hy0eZ_PpZBFVMeVJhMuUcIYVQkqohBDBUkFYRjMqYqGyvChQkHWCCQ1jmmQJ5zwuCWGp5jkv6BBc93u3zn522rdyY3yuww-NDr9JLFAqGEKMBvTqH7q2nWvCdRLzFCNBCcKBGvfUl6n1Tm6d2Si3kxjJfcoypCwPKcvJfHpogiPqHSE8_f3nUO5DckEFk6vlTL7OVjdiyd6koD_hTYB6</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1691073201</pqid></control><display><type>article</type><title>Rigorous design of distillation columns using surrogate models based on Kriging interpolation</title><source>Wiley Journals</source><creator>Quirante, Natalia ; Javaloyes, Juan ; Caballero, José A.</creator><creatorcontrib>Quirante, Natalia ; Javaloyes, Juan ; Caballero, José A.</creatorcontrib><description>The economic design of a distillation column or distillation sequences is a challenging problem that has been addressed by superstructure approaches. However, these methods have not been widely used because they lead to mixed‐integer nonlinear programs that are hard to solve, and require complex initialization procedures. In this article, we propose to address this challenging problem by substituting the distillation columns by Kriging‐based surrogate models generated via state of the art distillation models. We study different columns with increasing difficulty, and show that it is possible to get accurate Kriging‐based surrogate models. The optimization strategy ensures that convergence to a local optimum is guaranteed for numerical noise‐free models. For distillation columns (slightly noisy systems), Karush–Kuhn–Tucker optimality conditions cannot be tested directly on the actual model, but still we can guarantee a local minimum in a trust region of the surrogate model that contains the actual local minimum. © 2015 American Institute of Chemical Engineers AIChE J, 61: 2169–2187, 2015</description><identifier>ISSN: 0001-1541</identifier><identifier>EISSN: 1547-5905</identifier><identifier>DOI: 10.1002/aic.14798</identifier><identifier>CODEN: AICEAC</identifier><language>eng</language><publisher>New York: Blackwell Publishing Ltd</publisher><subject>Chemical engineering ; Chemical engineers ; Convergence ; design (distillation columns) ; Design engineering ; Distillation ; Interpolation ; Kriging algorithm ; mathematical modeling ; Mathematical models ; Nonlinear programming ; Numerical analysis ; Optimization ; simulation ; Strategy ; Superstructures</subject><ispartof>AIChE journal, 2015-07, Vol.61 (7), p.2169-2187</ispartof><rights>2015 American Institute of Chemical Engineers</rights><rights>Copyright American Institute of Chemical Engineers Jul 2015</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Faic.14798$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Faic.14798$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,27924,27925,45574,45575</link.rule.ids></links><search><creatorcontrib>Quirante, Natalia</creatorcontrib><creatorcontrib>Javaloyes, Juan</creatorcontrib><creatorcontrib>Caballero, José A.</creatorcontrib><title>Rigorous design of distillation columns using surrogate models based on Kriging interpolation</title><title>AIChE journal</title><addtitle>AIChE J</addtitle><description>The economic design of a distillation column or distillation sequences is a challenging problem that has been addressed by superstructure approaches. However, these methods have not been widely used because they lead to mixed‐integer nonlinear programs that are hard to solve, and require complex initialization procedures. In this article, we propose to address this challenging problem by substituting the distillation columns by Kriging‐based surrogate models generated via state of the art distillation models. We study different columns with increasing difficulty, and show that it is possible to get accurate Kriging‐based surrogate models. The optimization strategy ensures that convergence to a local optimum is guaranteed for numerical noise‐free models. For distillation columns (slightly noisy systems), Karush–Kuhn–Tucker optimality conditions cannot be tested directly on the actual model, but still we can guarantee a local minimum in a trust region of the surrogate model that contains the actual local minimum. © 2015 American Institute of Chemical Engineers AIChE J, 61: 2169–2187, 2015</description><subject>Chemical engineering</subject><subject>Chemical engineers</subject><subject>Convergence</subject><subject>design (distillation columns)</subject><subject>Design engineering</subject><subject>Distillation</subject><subject>Interpolation</subject><subject>Kriging algorithm</subject><subject>mathematical modeling</subject><subject>Mathematical models</subject><subject>Nonlinear programming</subject><subject>Numerical analysis</subject><subject>Optimization</subject><subject>simulation</subject><subject>Strategy</subject><subject>Superstructures</subject><issn>0001-1541</issn><issn>1547-5905</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><recordid>eNpdkF9LwzAUxYMoOKcPfoOAL750y58maR_n0DkcE0QdCBLSNi2ZXTOTFt23N1vFB5_uvYffudx7ALjEaIQRImNl8hGORZocgQFmsYhYitgxGCCEcBQEfArOvF-HiYiEDMD7k6mss52HhfamaqAtYWF8a-patcY2MLd1t2k87LxpKug752ylWg03ttC1h5nyuoCBe3Cm2hOmabXb2t59Dk5KVXt98VuH4OXu9nl6Hy0eZ_PpZBFVMeVJhMuUcIYVQkqohBDBUkFYRjMqYqGyvChQkHWCCQ1jmmQJ5zwuCWGp5jkv6BBc93u3zn522rdyY3yuww-NDr9JLFAqGEKMBvTqH7q2nWvCdRLzFCNBCcKBGvfUl6n1Tm6d2Si3kxjJfcoypCwPKcvJfHpogiPqHSE8_f3nUO5DckEFk6vlTL7OVjdiyd6koD_hTYB6</recordid><startdate>201507</startdate><enddate>201507</enddate><creator>Quirante, Natalia</creator><creator>Javaloyes, Juan</creator><creator>Caballero, José A.</creator><general>Blackwell Publishing Ltd</general><general>American Institute of Chemical Engineers</general><scope>BSCLL</scope><scope>7ST</scope><scope>7U5</scope><scope>8FD</scope><scope>C1K</scope><scope>L7M</scope><scope>SOI</scope></search><sort><creationdate>201507</creationdate><title>Rigorous design of distillation columns using surrogate models based on Kriging interpolation</title><author>Quirante, Natalia ; Javaloyes, Juan ; Caballero, José A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-g4368-1f92651a00a7a822759725b3b3747abcdd0a82e81237ab98b86664f2259e6c6d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Chemical engineering</topic><topic>Chemical engineers</topic><topic>Convergence</topic><topic>design (distillation columns)</topic><topic>Design engineering</topic><topic>Distillation</topic><topic>Interpolation</topic><topic>Kriging algorithm</topic><topic>mathematical modeling</topic><topic>Mathematical models</topic><topic>Nonlinear programming</topic><topic>Numerical analysis</topic><topic>Optimization</topic><topic>simulation</topic><topic>Strategy</topic><topic>Superstructures</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Quirante, Natalia</creatorcontrib><creatorcontrib>Javaloyes, Juan</creatorcontrib><creatorcontrib>Caballero, José A.</creatorcontrib><collection>Istex</collection><collection>Environment Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Environment Abstracts</collection><jtitle>AIChE journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Quirante, Natalia</au><au>Javaloyes, Juan</au><au>Caballero, José A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Rigorous design of distillation columns using surrogate models based on Kriging interpolation</atitle><jtitle>AIChE journal</jtitle><addtitle>AIChE J</addtitle><date>2015-07</date><risdate>2015</risdate><volume>61</volume><issue>7</issue><spage>2169</spage><epage>2187</epage><pages>2169-2187</pages><issn>0001-1541</issn><eissn>1547-5905</eissn><coden>AICEAC</coden><abstract>The economic design of a distillation column or distillation sequences is a challenging problem that has been addressed by superstructure approaches. However, these methods have not been widely used because they lead to mixed‐integer nonlinear programs that are hard to solve, and require complex initialization procedures. In this article, we propose to address this challenging problem by substituting the distillation columns by Kriging‐based surrogate models generated via state of the art distillation models. We study different columns with increasing difficulty, and show that it is possible to get accurate Kriging‐based surrogate models. The optimization strategy ensures that convergence to a local optimum is guaranteed for numerical noise‐free models. For distillation columns (slightly noisy systems), Karush–Kuhn–Tucker optimality conditions cannot be tested directly on the actual model, but still we can guarantee a local minimum in a trust region of the surrogate model that contains the actual local minimum. © 2015 American Institute of Chemical Engineers AIChE J, 61: 2169–2187, 2015</abstract><cop>New York</cop><pub>Blackwell Publishing Ltd</pub><doi>10.1002/aic.14798</doi><tpages>19</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0001-1541 |
ispartof | AIChE journal, 2015-07, Vol.61 (7), p.2169-2187 |
issn | 0001-1541 1547-5905 |
language | eng |
recordid | cdi_proquest_miscellaneous_1709750053 |
source | Wiley Journals |
subjects | Chemical engineering Chemical engineers Convergence design (distillation columns) Design engineering Distillation Interpolation Kriging algorithm mathematical modeling Mathematical models Nonlinear programming Numerical analysis Optimization simulation Strategy Superstructures |
title | Rigorous design of distillation columns using surrogate models based on Kriging interpolation |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T05%3A30%3A28IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_wiley&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Rigorous%20design%20of%20distillation%20columns%20using%20surrogate%20models%20based%20on%20Kriging%20interpolation&rft.jtitle=AIChE%20journal&rft.au=Quirante,%20Natalia&rft.date=2015-07&rft.volume=61&rft.issue=7&rft.spage=2169&rft.epage=2187&rft.pages=2169-2187&rft.issn=0001-1541&rft.eissn=1547-5905&rft.coden=AICEAC&rft_id=info:doi/10.1002/aic.14798&rft_dat=%3Cproquest_wiley%3E3725906571%3C/proquest_wiley%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1691073201&rft_id=info:pmid/&rfr_iscdi=true |