Experimental characterization of three-dimensional corner flows at low Reynolds numbers
We investigate experimentally the characteristics of the flow field that develops at low Reynolds numbers ( $\mathit{Re}\ll 1$ ) around a sharp $9{0}^{\ensuremath{\circ} } $ corner bounded by channel walls. Two-dimensional planar velocity fields are obtained using particle image velocimetry (PIV) co...
Gespeichert in:
Veröffentlicht in: | Journal of fluid mechanics 2012-09, Vol.707, p.37-52 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 52 |
---|---|
container_issue | |
container_start_page | 37 |
container_title | Journal of fluid mechanics |
container_volume | 707 |
creator | Sznitman, J. Guglielmini, L. Clifton, D. Scobee, D. Stone, H. A. Smits, A. J. |
description | We investigate experimentally the characteristics of the flow field that develops at low Reynolds numbers (
$\mathit{Re}\ll 1$
) around a sharp
$9{0}^{\ensuremath{\circ} } $
corner bounded by channel walls. Two-dimensional planar velocity fields are obtained using particle image velocimetry (PIV) conducted in a towing tank filled with a silicone oil of high viscosity. We find that, in the vicinity of the corner, the steady-state flow patterns bear the signature of a three-dimensional secondary flow, characterized by counter-rotating pairs of streamwise vortical structures and identified by the presence of non-vanishing transverse velocities (
${u}_{z} $
). These results are compared to numerical solutions of the incompressible flow as well as to predictions obtained, for a similar geometry, from an asymptotic expansion solution (Guglielmini et al., J. Fluid Mech., vol. 668, 2011, pp. 33–57). Furthermore, we discuss the influence of both Reynolds number and aspect ratio of the channel cross-section on the resulting secondary flows. This work represents, to the best of our knowledge, the first experimental characterization of the three-dimensional flow features arising in a pressure-driven flow near a corner at low Reynolds number. |
doi_str_mv | 10.1017/jfm.2012.250 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1709748845</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><cupid>10_1017_jfm_2012_250</cupid><sourcerecordid>1701504001</sourcerecordid><originalsourceid>FETCH-LOGICAL-c464t-5ccaccd9238e13c66c83fc6b9b9454d5b45732a5f99036d69da595d4978bc2bf3</originalsourceid><addsrcrecordid>eNqNkUtLw0AUhQdRsFZ3_oCACC5MnHcySyn1AQVBFJdhMg-bkmTqTILWX--EFhFx4erC5bvncM8B4BTBDEGUX61sm2GIcIYZ3AMTRLlIc07ZPphAiHGKEIaH4CiEFYSIQJFPwMv8Y2183Zqul02iltJL1cfFp-xr1yXOJv3SG5PqEQlxNVLOd8YntnHvIZF9EmfyaDada3RIuqGtjA_H4MDKJpiT3ZyC55v50-wuXTzc3s-uF6minPYpU0oqpQUmhUFEca4KYhWvRCUoo5pVlOUES2aFgIRrLrRkgmkq8qJSuLJkCi62umvv3gYT-rKtgzJNIzvjhlCiPL5Ji4Ky_6CIQTpGMwVnv9CVG3z8PVKQIkwLDItIXW4p5V0I3thyHZOUfhOhciykjIWUYyFlLCTi5ztRGZRsrJedqsP3DeYkumMRuWwnK9vK1_rV_HT_Q_gLyKqaJQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1041248208</pqid></control><display><type>article</type><title>Experimental characterization of three-dimensional corner flows at low Reynolds numbers</title><source>Cambridge University Press Journals Complete</source><creator>Sznitman, J. ; Guglielmini, L. ; Clifton, D. ; Scobee, D. ; Stone, H. A. ; Smits, A. J.</creator><creatorcontrib>Sznitman, J. ; Guglielmini, L. ; Clifton, D. ; Scobee, D. ; Stone, H. A. ; Smits, A. J.</creatorcontrib><description>We investigate experimentally the characteristics of the flow field that develops at low Reynolds numbers (
$\mathit{Re}\ll 1$
) around a sharp
$9{0}^{\ensuremath{\circ} } $
corner bounded by channel walls. Two-dimensional planar velocity fields are obtained using particle image velocimetry (PIV) conducted in a towing tank filled with a silicone oil of high viscosity. We find that, in the vicinity of the corner, the steady-state flow patterns bear the signature of a three-dimensional secondary flow, characterized by counter-rotating pairs of streamwise vortical structures and identified by the presence of non-vanishing transverse velocities (
${u}_{z} $
). These results are compared to numerical solutions of the incompressible flow as well as to predictions obtained, for a similar geometry, from an asymptotic expansion solution (Guglielmini et al., J. Fluid Mech., vol. 668, 2011, pp. 33–57). Furthermore, we discuss the influence of both Reynolds number and aspect ratio of the channel cross-section on the resulting secondary flows. This work represents, to the best of our knowledge, the first experimental characterization of the three-dimensional flow features arising in a pressure-driven flow near a corner at low Reynolds number.</description><identifier>ISSN: 0022-1120</identifier><identifier>EISSN: 1469-7645</identifier><identifier>DOI: 10.1017/jfm.2012.250</identifier><identifier>CODEN: JFLSA7</identifier><language>eng</language><publisher>Cambridge, UK: Cambridge University Press</publisher><subject>Channels ; Computational fluid dynamics ; Corners ; Exact sciences and technology ; Flow pattern ; Flows in ducts, channels, nozzles, and conduits ; Fluid dynamics ; Fluid flow ; Fluid mechanics ; Fundamental areas of phenomenology (including applications) ; Laminar flows ; Low Reynolds number ; Low-reynolds-number (creeping) flows ; Mathematical models ; Physics ; Reynolds number ; Secondary flow ; Three dimensional flow</subject><ispartof>Journal of fluid mechanics, 2012-09, Vol.707, p.37-52</ispartof><rights>Copyright © Cambridge University Press 2012</rights><rights>2015 INIST-CNRS</rights><rights>Copyright © Cambridge University Press 2012</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c464t-5ccaccd9238e13c66c83fc6b9b9454d5b45732a5f99036d69da595d4978bc2bf3</citedby><cites>FETCH-LOGICAL-c464t-5ccaccd9238e13c66c83fc6b9b9454d5b45732a5f99036d69da595d4978bc2bf3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.cambridge.org/core/product/identifier/S0022112012002509/type/journal_article$$EHTML$$P50$$Gcambridge$$H</linktohtml><link.rule.ids>164,315,781,785,27926,27927,55630</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=26350429$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Sznitman, J.</creatorcontrib><creatorcontrib>Guglielmini, L.</creatorcontrib><creatorcontrib>Clifton, D.</creatorcontrib><creatorcontrib>Scobee, D.</creatorcontrib><creatorcontrib>Stone, H. A.</creatorcontrib><creatorcontrib>Smits, A. J.</creatorcontrib><title>Experimental characterization of three-dimensional corner flows at low Reynolds numbers</title><title>Journal of fluid mechanics</title><addtitle>J. Fluid Mech</addtitle><description>We investigate experimentally the characteristics of the flow field that develops at low Reynolds numbers (
$\mathit{Re}\ll 1$
) around a sharp
$9{0}^{\ensuremath{\circ} } $
corner bounded by channel walls. Two-dimensional planar velocity fields are obtained using particle image velocimetry (PIV) conducted in a towing tank filled with a silicone oil of high viscosity. We find that, in the vicinity of the corner, the steady-state flow patterns bear the signature of a three-dimensional secondary flow, characterized by counter-rotating pairs of streamwise vortical structures and identified by the presence of non-vanishing transverse velocities (
${u}_{z} $
). These results are compared to numerical solutions of the incompressible flow as well as to predictions obtained, for a similar geometry, from an asymptotic expansion solution (Guglielmini et al., J. Fluid Mech., vol. 668, 2011, pp. 33–57). Furthermore, we discuss the influence of both Reynolds number and aspect ratio of the channel cross-section on the resulting secondary flows. This work represents, to the best of our knowledge, the first experimental characterization of the three-dimensional flow features arising in a pressure-driven flow near a corner at low Reynolds number.</description><subject>Channels</subject><subject>Computational fluid dynamics</subject><subject>Corners</subject><subject>Exact sciences and technology</subject><subject>Flow pattern</subject><subject>Flows in ducts, channels, nozzles, and conduits</subject><subject>Fluid dynamics</subject><subject>Fluid flow</subject><subject>Fluid mechanics</subject><subject>Fundamental areas of phenomenology (including applications)</subject><subject>Laminar flows</subject><subject>Low Reynolds number</subject><subject>Low-reynolds-number (creeping) flows</subject><subject>Mathematical models</subject><subject>Physics</subject><subject>Reynolds number</subject><subject>Secondary flow</subject><subject>Three dimensional flow</subject><issn>0022-1120</issn><issn>1469-7645</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNqNkUtLw0AUhQdRsFZ3_oCACC5MnHcySyn1AQVBFJdhMg-bkmTqTILWX--EFhFx4erC5bvncM8B4BTBDEGUX61sm2GIcIYZ3AMTRLlIc07ZPphAiHGKEIaH4CiEFYSIQJFPwMv8Y2183Zqul02iltJL1cfFp-xr1yXOJv3SG5PqEQlxNVLOd8YntnHvIZF9EmfyaDada3RIuqGtjA_H4MDKJpiT3ZyC55v50-wuXTzc3s-uF6minPYpU0oqpQUmhUFEca4KYhWvRCUoo5pVlOUES2aFgIRrLrRkgmkq8qJSuLJkCi62umvv3gYT-rKtgzJNIzvjhlCiPL5Ji4Ky_6CIQTpGMwVnv9CVG3z8PVKQIkwLDItIXW4p5V0I3thyHZOUfhOhciykjIWUYyFlLCTi5ztRGZRsrJedqsP3DeYkumMRuWwnK9vK1_rV_HT_Q_gLyKqaJQ</recordid><startdate>20120925</startdate><enddate>20120925</enddate><creator>Sznitman, J.</creator><creator>Guglielmini, L.</creator><creator>Clifton, D.</creator><creator>Scobee, D.</creator><creator>Stone, H. A.</creator><creator>Smits, A. J.</creator><general>Cambridge University Press</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7TB</scope><scope>7U5</scope><scope>7UA</scope><scope>7XB</scope><scope>88I</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F1W</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>H8D</scope><scope>H96</scope><scope>HCIFZ</scope><scope>KR7</scope><scope>L.G</scope><scope>L6V</scope><scope>L7M</scope><scope>M2O</scope><scope>M2P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>Q9U</scope><scope>S0W</scope></search><sort><creationdate>20120925</creationdate><title>Experimental characterization of three-dimensional corner flows at low Reynolds numbers</title><author>Sznitman, J. ; Guglielmini, L. ; Clifton, D. ; Scobee, D. ; Stone, H. A. ; Smits, A. J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c464t-5ccaccd9238e13c66c83fc6b9b9454d5b45732a5f99036d69da595d4978bc2bf3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Channels</topic><topic>Computational fluid dynamics</topic><topic>Corners</topic><topic>Exact sciences and technology</topic><topic>Flow pattern</topic><topic>Flows in ducts, channels, nozzles, and conduits</topic><topic>Fluid dynamics</topic><topic>Fluid flow</topic><topic>Fluid mechanics</topic><topic>Fundamental areas of phenomenology (including applications)</topic><topic>Laminar flows</topic><topic>Low Reynolds number</topic><topic>Low-reynolds-number (creeping) flows</topic><topic>Mathematical models</topic><topic>Physics</topic><topic>Reynolds number</topic><topic>Secondary flow</topic><topic>Three dimensional flow</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sznitman, J.</creatorcontrib><creatorcontrib>Guglielmini, L.</creatorcontrib><creatorcontrib>Clifton, D.</creatorcontrib><creatorcontrib>Scobee, D.</creatorcontrib><creatorcontrib>Stone, H. A.</creatorcontrib><creatorcontrib>Smits, A. J.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Water Resources Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric & Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>Aerospace Database</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources</collection><collection>SciTech Premium Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Earth, Atmospheric & Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><collection>DELNET Engineering & Technology Collection</collection><jtitle>Journal of fluid mechanics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sznitman, J.</au><au>Guglielmini, L.</au><au>Clifton, D.</au><au>Scobee, D.</au><au>Stone, H. A.</au><au>Smits, A. J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Experimental characterization of three-dimensional corner flows at low Reynolds numbers</atitle><jtitle>Journal of fluid mechanics</jtitle><addtitle>J. Fluid Mech</addtitle><date>2012-09-25</date><risdate>2012</risdate><volume>707</volume><spage>37</spage><epage>52</epage><pages>37-52</pages><issn>0022-1120</issn><eissn>1469-7645</eissn><coden>JFLSA7</coden><abstract>We investigate experimentally the characteristics of the flow field that develops at low Reynolds numbers (
$\mathit{Re}\ll 1$
) around a sharp
$9{0}^{\ensuremath{\circ} } $
corner bounded by channel walls. Two-dimensional planar velocity fields are obtained using particle image velocimetry (PIV) conducted in a towing tank filled with a silicone oil of high viscosity. We find that, in the vicinity of the corner, the steady-state flow patterns bear the signature of a three-dimensional secondary flow, characterized by counter-rotating pairs of streamwise vortical structures and identified by the presence of non-vanishing transverse velocities (
${u}_{z} $
). These results are compared to numerical solutions of the incompressible flow as well as to predictions obtained, for a similar geometry, from an asymptotic expansion solution (Guglielmini et al., J. Fluid Mech., vol. 668, 2011, pp. 33–57). Furthermore, we discuss the influence of both Reynolds number and aspect ratio of the channel cross-section on the resulting secondary flows. This work represents, to the best of our knowledge, the first experimental characterization of the three-dimensional flow features arising in a pressure-driven flow near a corner at low Reynolds number.</abstract><cop>Cambridge, UK</cop><pub>Cambridge University Press</pub><doi>10.1017/jfm.2012.250</doi><tpages>16</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0022-1120 |
ispartof | Journal of fluid mechanics, 2012-09, Vol.707, p.37-52 |
issn | 0022-1120 1469-7645 |
language | eng |
recordid | cdi_proquest_miscellaneous_1709748845 |
source | Cambridge University Press Journals Complete |
subjects | Channels Computational fluid dynamics Corners Exact sciences and technology Flow pattern Flows in ducts, channels, nozzles, and conduits Fluid dynamics Fluid flow Fluid mechanics Fundamental areas of phenomenology (including applications) Laminar flows Low Reynolds number Low-reynolds-number (creeping) flows Mathematical models Physics Reynolds number Secondary flow Three dimensional flow |
title | Experimental characterization of three-dimensional corner flows at low Reynolds numbers |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-18T07%3A12%3A31IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Experimental%20characterization%20of%20three-dimensional%20corner%20flows%20at%20low%20Reynolds%20numbers&rft.jtitle=Journal%20of%20fluid%20mechanics&rft.au=Sznitman,%20J.&rft.date=2012-09-25&rft.volume=707&rft.spage=37&rft.epage=52&rft.pages=37-52&rft.issn=0022-1120&rft.eissn=1469-7645&rft.coden=JFLSA7&rft_id=info:doi/10.1017/jfm.2012.250&rft_dat=%3Cproquest_cross%3E1701504001%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1041248208&rft_id=info:pmid/&rft_cupid=10_1017_jfm_2012_250&rfr_iscdi=true |