Effect of 4-point bending test procedure on crack propagation in thin film stacks

[Display omitted] •Increasing loading speed will result in increased measured Gc and smoother force plateau.•Deeper notch depth was proved to be able to force the cohesive failure within the tested low-k.•Symmetric and asymmetric crack propagation proved to have no influence on the values of force p...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Microelectronic engineering 2015-04, Vol.137, p.59-63
Hauptverfasser: Ključar, Luka, Gonzalez, Mario, Vanstreels, Kris, Ivanković, Andrej, Hecker, Michael, De Wolf, Ingrid
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 63
container_issue
container_start_page 59
container_title Microelectronic engineering
container_volume 137
creator Ključar, Luka
Gonzalez, Mario
Vanstreels, Kris
Ivanković, Andrej
Hecker, Michael
De Wolf, Ingrid
description [Display omitted] •Increasing loading speed will result in increased measured Gc and smoother force plateau.•Deeper notch depth was proved to be able to force the cohesive failure within the tested low-k.•Symmetric and asymmetric crack propagation proved to have no influence on the values of force plateau.•Observed reduction in crack path variation with an increase of loading speed. An in-depth study of 4-point bending (4PB) test method had been conducted in order to determine the influence of test parameters on measured critical energy release rate Gc and fracture location. Force loading speed proved to have an influence not only on measured Gc values, but also on quality of force–displacement curve plateau, as did the loading pin distance. While the 4PB technique is used to determine the adhesion strength of a material, a study of notch depth had also been conducted in order to determine whether it is possible to trigger the cohesive failure of the tested low-k. In addition to the experimental work, the influence of crack propagation path within the sample (symmetric and asymmetric propagation) on measured force plateau was assessed using a Finite Element Method (FEM) modeling. Assuming same interfaces triggered, crack propagation path was shown to have no influence on the value of force plateau. The FEM simulation also showed good correlation with analytical results found in literature in regards to crack opening.
doi_str_mv 10.1016/j.mee.2014.09.006
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1709746759</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0167931714003724</els_id><sourcerecordid>1709746759</sourcerecordid><originalsourceid>FETCH-LOGICAL-c470t-59c3cd0a8213d1ca11c303c030b4a42e942d4a6cc9c71db17bc2290407e8b7393</originalsourceid><addsrcrecordid>eNp9kE1PwzAMhiMEEmPwA7jlyKXFadKmESc0jQ9pEkKCc5S66chYP0gyJP49qcaZiy3b72vZDyHXDHIGrLrd5b21eQFM5KBygOqELFgteVaWVX1KFkkjM8WZPCcXIewg1QLqBXldd53FSMeOimwa3RBpY4fWDVsabYh08iPa9uAtHQeK3uDn3JrM1kSXOm6g8SOFzu17GmIah0ty1pl9sFd_eUneH9Zvq6ds8_L4vLrfZCgkxKxUyLEFUxeMtwwNY8iBI3BohBGFVaJohakQFUrWNkw2WBQKBEhbN5IrviQ3x73pnq9DulX3LqDd781gx0PQTIKSopLlLGVHKfoxBG87PXnXG_-jGegZn97phE_P-DQonfAlz93RY9MP3856HdDZIcFwPgHT7ej-cf8CYi93aA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1709746759</pqid></control><display><type>article</type><title>Effect of 4-point bending test procedure on crack propagation in thin film stacks</title><source>Elsevier ScienceDirect Journals</source><creator>Ključar, Luka ; Gonzalez, Mario ; Vanstreels, Kris ; Ivanković, Andrej ; Hecker, Michael ; De Wolf, Ingrid</creator><creatorcontrib>Ključar, Luka ; Gonzalez, Mario ; Vanstreels, Kris ; Ivanković, Andrej ; Hecker, Michael ; De Wolf, Ingrid</creatorcontrib><description>[Display omitted] •Increasing loading speed will result in increased measured Gc and smoother force plateau.•Deeper notch depth was proved to be able to force the cohesive failure within the tested low-k.•Symmetric and asymmetric crack propagation proved to have no influence on the values of force plateau.•Observed reduction in crack path variation with an increase of loading speed. An in-depth study of 4-point bending (4PB) test method had been conducted in order to determine the influence of test parameters on measured critical energy release rate Gc and fracture location. Force loading speed proved to have an influence not only on measured Gc values, but also on quality of force–displacement curve plateau, as did the loading pin distance. While the 4PB technique is used to determine the adhesion strength of a material, a study of notch depth had also been conducted in order to determine whether it is possible to trigger the cohesive failure of the tested low-k. In addition to the experimental work, the influence of crack propagation path within the sample (symmetric and asymmetric propagation) on measured force plateau was assessed using a Finite Element Method (FEM) modeling. Assuming same interfaces triggered, crack propagation path was shown to have no influence on the value of force plateau. The FEM simulation also showed good correlation with analytical results found in literature in regards to crack opening.</description><identifier>ISSN: 0167-9317</identifier><identifier>EISSN: 1873-5568</identifier><identifier>DOI: 10.1016/j.mee.2014.09.006</identifier><language>eng</language><publisher>Elsevier B.V</publisher><subject>4 point bending ; Bend tests ; Cohesive/adhesive failure ; Computer simulation ; Crack path variation ; Crack propagation ; Failure ; FEM modeling ; Finite element method ; Fracture mechanics ; Gc variation ; Mathematical analysis ; Mathematical models ; Symmetric/asymmetric crack propagation ; Thin films</subject><ispartof>Microelectronic engineering, 2015-04, Vol.137, p.59-63</ispartof><rights>2014 Elsevier B.V.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c470t-59c3cd0a8213d1ca11c303c030b4a42e942d4a6cc9c71db17bc2290407e8b7393</citedby><cites>FETCH-LOGICAL-c470t-59c3cd0a8213d1ca11c303c030b4a42e942d4a6cc9c71db17bc2290407e8b7393</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0167931714003724$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65306</link.rule.ids></links><search><creatorcontrib>Ključar, Luka</creatorcontrib><creatorcontrib>Gonzalez, Mario</creatorcontrib><creatorcontrib>Vanstreels, Kris</creatorcontrib><creatorcontrib>Ivanković, Andrej</creatorcontrib><creatorcontrib>Hecker, Michael</creatorcontrib><creatorcontrib>De Wolf, Ingrid</creatorcontrib><title>Effect of 4-point bending test procedure on crack propagation in thin film stacks</title><title>Microelectronic engineering</title><description>[Display omitted] •Increasing loading speed will result in increased measured Gc and smoother force plateau.•Deeper notch depth was proved to be able to force the cohesive failure within the tested low-k.•Symmetric and asymmetric crack propagation proved to have no influence on the values of force plateau.•Observed reduction in crack path variation with an increase of loading speed. An in-depth study of 4-point bending (4PB) test method had been conducted in order to determine the influence of test parameters on measured critical energy release rate Gc and fracture location. Force loading speed proved to have an influence not only on measured Gc values, but also on quality of force–displacement curve plateau, as did the loading pin distance. While the 4PB technique is used to determine the adhesion strength of a material, a study of notch depth had also been conducted in order to determine whether it is possible to trigger the cohesive failure of the tested low-k. In addition to the experimental work, the influence of crack propagation path within the sample (symmetric and asymmetric propagation) on measured force plateau was assessed using a Finite Element Method (FEM) modeling. Assuming same interfaces triggered, crack propagation path was shown to have no influence on the value of force plateau. The FEM simulation also showed good correlation with analytical results found in literature in regards to crack opening.</description><subject>4 point bending</subject><subject>Bend tests</subject><subject>Cohesive/adhesive failure</subject><subject>Computer simulation</subject><subject>Crack path variation</subject><subject>Crack propagation</subject><subject>Failure</subject><subject>FEM modeling</subject><subject>Finite element method</subject><subject>Fracture mechanics</subject><subject>Gc variation</subject><subject>Mathematical analysis</subject><subject>Mathematical models</subject><subject>Symmetric/asymmetric crack propagation</subject><subject>Thin films</subject><issn>0167-9317</issn><issn>1873-5568</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><recordid>eNp9kE1PwzAMhiMEEmPwA7jlyKXFadKmESc0jQ9pEkKCc5S66chYP0gyJP49qcaZiy3b72vZDyHXDHIGrLrd5b21eQFM5KBygOqELFgteVaWVX1KFkkjM8WZPCcXIewg1QLqBXldd53FSMeOimwa3RBpY4fWDVsabYh08iPa9uAtHQeK3uDn3JrM1kSXOm6g8SOFzu17GmIah0ty1pl9sFd_eUneH9Zvq6ds8_L4vLrfZCgkxKxUyLEFUxeMtwwNY8iBI3BohBGFVaJohakQFUrWNkw2WBQKBEhbN5IrviQ3x73pnq9DulX3LqDd781gx0PQTIKSopLlLGVHKfoxBG87PXnXG_-jGegZn97phE_P-DQonfAlz93RY9MP3856HdDZIcFwPgHT7ej-cf8CYi93aA</recordid><startdate>20150402</startdate><enddate>20150402</enddate><creator>Ključar, Luka</creator><creator>Gonzalez, Mario</creator><creator>Vanstreels, Kris</creator><creator>Ivanković, Andrej</creator><creator>Hecker, Michael</creator><creator>De Wolf, Ingrid</creator><general>Elsevier B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>L7M</scope></search><sort><creationdate>20150402</creationdate><title>Effect of 4-point bending test procedure on crack propagation in thin film stacks</title><author>Ključar, Luka ; Gonzalez, Mario ; Vanstreels, Kris ; Ivanković, Andrej ; Hecker, Michael ; De Wolf, Ingrid</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c470t-59c3cd0a8213d1ca11c303c030b4a42e942d4a6cc9c71db17bc2290407e8b7393</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>4 point bending</topic><topic>Bend tests</topic><topic>Cohesive/adhesive failure</topic><topic>Computer simulation</topic><topic>Crack path variation</topic><topic>Crack propagation</topic><topic>Failure</topic><topic>FEM modeling</topic><topic>Finite element method</topic><topic>Fracture mechanics</topic><topic>Gc variation</topic><topic>Mathematical analysis</topic><topic>Mathematical models</topic><topic>Symmetric/asymmetric crack propagation</topic><topic>Thin films</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ključar, Luka</creatorcontrib><creatorcontrib>Gonzalez, Mario</creatorcontrib><creatorcontrib>Vanstreels, Kris</creatorcontrib><creatorcontrib>Ivanković, Andrej</creatorcontrib><creatorcontrib>Hecker, Michael</creatorcontrib><creatorcontrib>De Wolf, Ingrid</creatorcontrib><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Microelectronic engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ključar, Luka</au><au>Gonzalez, Mario</au><au>Vanstreels, Kris</au><au>Ivanković, Andrej</au><au>Hecker, Michael</au><au>De Wolf, Ingrid</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Effect of 4-point bending test procedure on crack propagation in thin film stacks</atitle><jtitle>Microelectronic engineering</jtitle><date>2015-04-02</date><risdate>2015</risdate><volume>137</volume><spage>59</spage><epage>63</epage><pages>59-63</pages><issn>0167-9317</issn><eissn>1873-5568</eissn><abstract>[Display omitted] •Increasing loading speed will result in increased measured Gc and smoother force plateau.•Deeper notch depth was proved to be able to force the cohesive failure within the tested low-k.•Symmetric and asymmetric crack propagation proved to have no influence on the values of force plateau.•Observed reduction in crack path variation with an increase of loading speed. An in-depth study of 4-point bending (4PB) test method had been conducted in order to determine the influence of test parameters on measured critical energy release rate Gc and fracture location. Force loading speed proved to have an influence not only on measured Gc values, but also on quality of force–displacement curve plateau, as did the loading pin distance. While the 4PB technique is used to determine the adhesion strength of a material, a study of notch depth had also been conducted in order to determine whether it is possible to trigger the cohesive failure of the tested low-k. In addition to the experimental work, the influence of crack propagation path within the sample (symmetric and asymmetric propagation) on measured force plateau was assessed using a Finite Element Method (FEM) modeling. Assuming same interfaces triggered, crack propagation path was shown to have no influence on the value of force plateau. The FEM simulation also showed good correlation with analytical results found in literature in regards to crack opening.</abstract><pub>Elsevier B.V</pub><doi>10.1016/j.mee.2014.09.006</doi><tpages>5</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0167-9317
ispartof Microelectronic engineering, 2015-04, Vol.137, p.59-63
issn 0167-9317
1873-5568
language eng
recordid cdi_proquest_miscellaneous_1709746759
source Elsevier ScienceDirect Journals
subjects 4 point bending
Bend tests
Cohesive/adhesive failure
Computer simulation
Crack path variation
Crack propagation
Failure
FEM modeling
Finite element method
Fracture mechanics
Gc variation
Mathematical analysis
Mathematical models
Symmetric/asymmetric crack propagation
Thin films
title Effect of 4-point bending test procedure on crack propagation in thin film stacks
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T13%3A00%3A08IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Effect%20of%204-point%20bending%20test%20procedure%20on%20crack%20propagation%20in%20thin%20film%20stacks&rft.jtitle=Microelectronic%20engineering&rft.au=Klju%C4%8Dar,%20Luka&rft.date=2015-04-02&rft.volume=137&rft.spage=59&rft.epage=63&rft.pages=59-63&rft.issn=0167-9317&rft.eissn=1873-5568&rft_id=info:doi/10.1016/j.mee.2014.09.006&rft_dat=%3Cproquest_cross%3E1709746759%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1709746759&rft_id=info:pmid/&rft_els_id=S0167931714003724&rfr_iscdi=true