The effect of DNA supercoiling on nucleosome structure and stability

Nucleosomes have to open to allow access to DNA in transcription, replication, and DNA damage repair. Changes in DNA torsional strain (e.g. during transcription elongation) influence the accessibility of nucleosomal DNA. Here we investigated the effect of DNA supercoiling-induced torsional strain on...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of physics. Condensed matter 2015-02, Vol.27 (6), p.064105-7
Hauptverfasser: Elbel, Tabea, Langowski, Jörg
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 7
container_issue 6
container_start_page 064105
container_title Journal of physics. Condensed matter
container_volume 27
creator Elbel, Tabea
Langowski, Jörg
description Nucleosomes have to open to allow access to DNA in transcription, replication, and DNA damage repair. Changes in DNA torsional strain (e.g. during transcription elongation) influence the accessibility of nucleosomal DNA. Here we investigated the effect of DNA supercoiling-induced torsional strain on nucleosome structure and stability by scanning force microscopy (SFM) and fluorescence correlation spectroscopy (FCS). Nucleosomes were reconstituted onto 2.7 kb DNA plasmids with varying superhelical densities. The SFM results show a clear dependence of the amount of DNA wrapped around the nucleosome core on the strength and type of supercoiling. Negative supercoiling led to smaller nucleosome opening angles as compared to relaxed or positively supercoiled DNA. FCS experiments show that nucleosomes reconstituted on negatively superhelical DNA are more resistant to salt-induced destabilization, as seen by reduced H2A-H2B dimer eviction from the nucleosome. Our results show that changes in DNA topology, e.g. during transcription elongation, affect the accessibility of nucleosomal DNA.
doi_str_mv 10.1088/0953-8984/27/6/064105
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_proquest_miscellaneous_1709746576</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1709746576</sourcerecordid><originalsourceid>FETCH-LOGICAL-c514t-483082a8ea8fac6dc99c10ac763220ed48594da5d6f480ec9c657dcce5f664fc3</originalsourceid><addsrcrecordid>eNqNkc1LxDAQxYMoun78CUpP4qVu0iZpelx2_QLRywreQpxOtNI2NWkP-9-bZVU8iHoaBn5v3vAeIceMnjOq1JSWIk9Vqfg0K6ZySiVnVGyRCcslSyVXj9tk8sXskf0QXimlXOV8l-xlQsg8o2xCFssXTNBahCFxNlnczZIw9ujB1U3dPSeuS7oRGnTBtZiEwY8wjB4T01VxM0-RGlaHZMeaJuDRxzwgD5cXy_l1ent_dTOf3aYgGB_SaE5VZhQaZQ3ICsoSGDVQxF8yihVXouSVEZW0XFGEEqQoKgAUVkpuIT8gZ5u7vXdvI4ZBt3UAbBrToRuDZgUtCx5F8l8oKzJeqr9RKTLOpJQ0omKDgncheLS693Vr_Eozqte16HXkeh25zgot9aaWqDv5sBifWqy-VJ89ROB0A9Su169u9F3MUUP7_YruKxtB9gP4u_s7ebGinA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1652416660</pqid></control><display><type>article</type><title>The effect of DNA supercoiling on nucleosome structure and stability</title><source>MEDLINE</source><source>Institute of Physics Journals</source><creator>Elbel, Tabea ; Langowski, Jörg</creator><creatorcontrib>Elbel, Tabea ; Langowski, Jörg</creatorcontrib><description>Nucleosomes have to open to allow access to DNA in transcription, replication, and DNA damage repair. Changes in DNA torsional strain (e.g. during transcription elongation) influence the accessibility of nucleosomal DNA. Here we investigated the effect of DNA supercoiling-induced torsional strain on nucleosome structure and stability by scanning force microscopy (SFM) and fluorescence correlation spectroscopy (FCS). Nucleosomes were reconstituted onto 2.7 kb DNA plasmids with varying superhelical densities. The SFM results show a clear dependence of the amount of DNA wrapped around the nucleosome core on the strength and type of supercoiling. Negative supercoiling led to smaller nucleosome opening angles as compared to relaxed or positively supercoiled DNA. FCS experiments show that nucleosomes reconstituted on negatively superhelical DNA are more resistant to salt-induced destabilization, as seen by reduced H2A-H2B dimer eviction from the nucleosome. Our results show that changes in DNA topology, e.g. during transcription elongation, affect the accessibility of nucleosomal DNA.</description><identifier>ISSN: 0953-8984</identifier><identifier>EISSN: 1361-648X</identifier><identifier>DOI: 10.1088/0953-8984/27/6/064105</identifier><identifier>PMID: 25563201</identifier><identifier>CODEN: JCOMEL</identifier><language>eng</language><publisher>England: IOP Publishing</publisher><subject>Accessibility ; atomic force spectroscopy ; Condensed matter ; Density ; Deoxyribonucleic acid ; DNA, Superhelical - chemistry ; Elongation ; Fluorescence ; fluorescence correlation spectroscopy ; Fluorescent Dyes - chemistry ; histone ; Nucleosomes - chemistry ; Plasmids - genetics ; Stability ; Strain ; supercoiled DNA</subject><ispartof>Journal of physics. Condensed matter, 2015-02, Vol.27 (6), p.064105-7</ispartof><rights>2015 IOP Publishing Ltd</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c514t-483082a8ea8fac6dc99c10ac763220ed48594da5d6f480ec9c657dcce5f664fc3</citedby><cites>FETCH-LOGICAL-c514t-483082a8ea8fac6dc99c10ac763220ed48594da5d6f480ec9c657dcce5f664fc3</cites><orcidid>0000-0001-8600-0666</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://iopscience.iop.org/article/10.1088/0953-8984/27/6/064105/pdf$$EPDF$$P50$$Giop$$H</linktopdf><link.rule.ids>314,780,784,27924,27925,53846,53893</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/25563201$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Elbel, Tabea</creatorcontrib><creatorcontrib>Langowski, Jörg</creatorcontrib><title>The effect of DNA supercoiling on nucleosome structure and stability</title><title>Journal of physics. Condensed matter</title><addtitle>JPhysCM</addtitle><addtitle>J. Phys.: Condens. Matter</addtitle><description>Nucleosomes have to open to allow access to DNA in transcription, replication, and DNA damage repair. Changes in DNA torsional strain (e.g. during transcription elongation) influence the accessibility of nucleosomal DNA. Here we investigated the effect of DNA supercoiling-induced torsional strain on nucleosome structure and stability by scanning force microscopy (SFM) and fluorescence correlation spectroscopy (FCS). Nucleosomes were reconstituted onto 2.7 kb DNA plasmids with varying superhelical densities. The SFM results show a clear dependence of the amount of DNA wrapped around the nucleosome core on the strength and type of supercoiling. Negative supercoiling led to smaller nucleosome opening angles as compared to relaxed or positively supercoiled DNA. FCS experiments show that nucleosomes reconstituted on negatively superhelical DNA are more resistant to salt-induced destabilization, as seen by reduced H2A-H2B dimer eviction from the nucleosome. Our results show that changes in DNA topology, e.g. during transcription elongation, affect the accessibility of nucleosomal DNA.</description><subject>Accessibility</subject><subject>atomic force spectroscopy</subject><subject>Condensed matter</subject><subject>Density</subject><subject>Deoxyribonucleic acid</subject><subject>DNA, Superhelical - chemistry</subject><subject>Elongation</subject><subject>Fluorescence</subject><subject>fluorescence correlation spectroscopy</subject><subject>Fluorescent Dyes - chemistry</subject><subject>histone</subject><subject>Nucleosomes - chemistry</subject><subject>Plasmids - genetics</subject><subject>Stability</subject><subject>Strain</subject><subject>supercoiled DNA</subject><issn>0953-8984</issn><issn>1361-648X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqNkc1LxDAQxYMoun78CUpP4qVu0iZpelx2_QLRywreQpxOtNI2NWkP-9-bZVU8iHoaBn5v3vAeIceMnjOq1JSWIk9Vqfg0K6ZySiVnVGyRCcslSyVXj9tk8sXskf0QXimlXOV8l-xlQsg8o2xCFssXTNBahCFxNlnczZIw9ujB1U3dPSeuS7oRGnTBtZiEwY8wjB4T01VxM0-RGlaHZMeaJuDRxzwgD5cXy_l1ent_dTOf3aYgGB_SaE5VZhQaZQ3ICsoSGDVQxF8yihVXouSVEZW0XFGEEqQoKgAUVkpuIT8gZ5u7vXdvI4ZBt3UAbBrToRuDZgUtCx5F8l8oKzJeqr9RKTLOpJQ0omKDgncheLS693Vr_Eozqte16HXkeh25zgot9aaWqDv5sBifWqy-VJ89ROB0A9Su169u9F3MUUP7_YruKxtB9gP4u_s7ebGinA</recordid><startdate>20150218</startdate><enddate>20150218</enddate><creator>Elbel, Tabea</creator><creator>Langowski, Jörg</creator><general>IOP Publishing</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>7TM</scope><scope>7U5</scope><scope>8FD</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0001-8600-0666</orcidid></search><sort><creationdate>20150218</creationdate><title>The effect of DNA supercoiling on nucleosome structure and stability</title><author>Elbel, Tabea ; Langowski, Jörg</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c514t-483082a8ea8fac6dc99c10ac763220ed48594da5d6f480ec9c657dcce5f664fc3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Accessibility</topic><topic>atomic force spectroscopy</topic><topic>Condensed matter</topic><topic>Density</topic><topic>Deoxyribonucleic acid</topic><topic>DNA, Superhelical - chemistry</topic><topic>Elongation</topic><topic>Fluorescence</topic><topic>fluorescence correlation spectroscopy</topic><topic>Fluorescent Dyes - chemistry</topic><topic>histone</topic><topic>Nucleosomes - chemistry</topic><topic>Plasmids - genetics</topic><topic>Stability</topic><topic>Strain</topic><topic>supercoiled DNA</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Elbel, Tabea</creatorcontrib><creatorcontrib>Langowski, Jörg</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>Nucleic Acids Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Journal of physics. Condensed matter</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Elbel, Tabea</au><au>Langowski, Jörg</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The effect of DNA supercoiling on nucleosome structure and stability</atitle><jtitle>Journal of physics. Condensed matter</jtitle><stitle>JPhysCM</stitle><addtitle>J. Phys.: Condens. Matter</addtitle><date>2015-02-18</date><risdate>2015</risdate><volume>27</volume><issue>6</issue><spage>064105</spage><epage>7</epage><pages>064105-7</pages><issn>0953-8984</issn><eissn>1361-648X</eissn><coden>JCOMEL</coden><abstract>Nucleosomes have to open to allow access to DNA in transcription, replication, and DNA damage repair. Changes in DNA torsional strain (e.g. during transcription elongation) influence the accessibility of nucleosomal DNA. Here we investigated the effect of DNA supercoiling-induced torsional strain on nucleosome structure and stability by scanning force microscopy (SFM) and fluorescence correlation spectroscopy (FCS). Nucleosomes were reconstituted onto 2.7 kb DNA plasmids with varying superhelical densities. The SFM results show a clear dependence of the amount of DNA wrapped around the nucleosome core on the strength and type of supercoiling. Negative supercoiling led to smaller nucleosome opening angles as compared to relaxed or positively supercoiled DNA. FCS experiments show that nucleosomes reconstituted on negatively superhelical DNA are more resistant to salt-induced destabilization, as seen by reduced H2A-H2B dimer eviction from the nucleosome. Our results show that changes in DNA topology, e.g. during transcription elongation, affect the accessibility of nucleosomal DNA.</abstract><cop>England</cop><pub>IOP Publishing</pub><pmid>25563201</pmid><doi>10.1088/0953-8984/27/6/064105</doi><tpages>7</tpages><orcidid>https://orcid.org/0000-0001-8600-0666</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0953-8984
ispartof Journal of physics. Condensed matter, 2015-02, Vol.27 (6), p.064105-7
issn 0953-8984
1361-648X
language eng
recordid cdi_proquest_miscellaneous_1709746576
source MEDLINE; Institute of Physics Journals
subjects Accessibility
atomic force spectroscopy
Condensed matter
Density
Deoxyribonucleic acid
DNA, Superhelical - chemistry
Elongation
Fluorescence
fluorescence correlation spectroscopy
Fluorescent Dyes - chemistry
histone
Nucleosomes - chemistry
Plasmids - genetics
Stability
Strain
supercoiled DNA
title The effect of DNA supercoiling on nucleosome structure and stability
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-03T20%3A56%3A53IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20effect%20of%20DNA%20supercoiling%20on%20nucleosome%20structure%20and%20stability&rft.jtitle=Journal%20of%20physics.%20Condensed%20matter&rft.au=Elbel,%20Tabea&rft.date=2015-02-18&rft.volume=27&rft.issue=6&rft.spage=064105&rft.epage=7&rft.pages=064105-7&rft.issn=0953-8984&rft.eissn=1361-648X&rft.coden=JCOMEL&rft_id=info:doi/10.1088/0953-8984/27/6/064105&rft_dat=%3Cproquest_pubme%3E1709746576%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1652416660&rft_id=info:pmid/25563201&rfr_iscdi=true