The effect of DNA supercoiling on nucleosome structure and stability
Nucleosomes have to open to allow access to DNA in transcription, replication, and DNA damage repair. Changes in DNA torsional strain (e.g. during transcription elongation) influence the accessibility of nucleosomal DNA. Here we investigated the effect of DNA supercoiling-induced torsional strain on...
Gespeichert in:
Veröffentlicht in: | Journal of physics. Condensed matter 2015-02, Vol.27 (6), p.064105-7 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 7 |
---|---|
container_issue | 6 |
container_start_page | 064105 |
container_title | Journal of physics. Condensed matter |
container_volume | 27 |
creator | Elbel, Tabea Langowski, Jörg |
description | Nucleosomes have to open to allow access to DNA in transcription, replication, and DNA damage repair. Changes in DNA torsional strain (e.g. during transcription elongation) influence the accessibility of nucleosomal DNA. Here we investigated the effect of DNA supercoiling-induced torsional strain on nucleosome structure and stability by scanning force microscopy (SFM) and fluorescence correlation spectroscopy (FCS). Nucleosomes were reconstituted onto 2.7 kb DNA plasmids with varying superhelical densities. The SFM results show a clear dependence of the amount of DNA wrapped around the nucleosome core on the strength and type of supercoiling. Negative supercoiling led to smaller nucleosome opening angles as compared to relaxed or positively supercoiled DNA. FCS experiments show that nucleosomes reconstituted on negatively superhelical DNA are more resistant to salt-induced destabilization, as seen by reduced H2A-H2B dimer eviction from the nucleosome. Our results show that changes in DNA topology, e.g. during transcription elongation, affect the accessibility of nucleosomal DNA. |
doi_str_mv | 10.1088/0953-8984/27/6/064105 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_proquest_miscellaneous_1709746576</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1709746576</sourcerecordid><originalsourceid>FETCH-LOGICAL-c514t-483082a8ea8fac6dc99c10ac763220ed48594da5d6f480ec9c657dcce5f664fc3</originalsourceid><addsrcrecordid>eNqNkc1LxDAQxYMoun78CUpP4qVu0iZpelx2_QLRywreQpxOtNI2NWkP-9-bZVU8iHoaBn5v3vAeIceMnjOq1JSWIk9Vqfg0K6ZySiVnVGyRCcslSyVXj9tk8sXskf0QXimlXOV8l-xlQsg8o2xCFssXTNBahCFxNlnczZIw9ujB1U3dPSeuS7oRGnTBtZiEwY8wjB4T01VxM0-RGlaHZMeaJuDRxzwgD5cXy_l1ent_dTOf3aYgGB_SaE5VZhQaZQ3ICsoSGDVQxF8yihVXouSVEZW0XFGEEqQoKgAUVkpuIT8gZ5u7vXdvI4ZBt3UAbBrToRuDZgUtCx5F8l8oKzJeqr9RKTLOpJQ0omKDgncheLS693Vr_Eozqte16HXkeh25zgot9aaWqDv5sBifWqy-VJ89ROB0A9Su169u9F3MUUP7_YruKxtB9gP4u_s7ebGinA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1652416660</pqid></control><display><type>article</type><title>The effect of DNA supercoiling on nucleosome structure and stability</title><source>MEDLINE</source><source>Institute of Physics Journals</source><creator>Elbel, Tabea ; Langowski, Jörg</creator><creatorcontrib>Elbel, Tabea ; Langowski, Jörg</creatorcontrib><description>Nucleosomes have to open to allow access to DNA in transcription, replication, and DNA damage repair. Changes in DNA torsional strain (e.g. during transcription elongation) influence the accessibility of nucleosomal DNA. Here we investigated the effect of DNA supercoiling-induced torsional strain on nucleosome structure and stability by scanning force microscopy (SFM) and fluorescence correlation spectroscopy (FCS). Nucleosomes were reconstituted onto 2.7 kb DNA plasmids with varying superhelical densities. The SFM results show a clear dependence of the amount of DNA wrapped around the nucleosome core on the strength and type of supercoiling. Negative supercoiling led to smaller nucleosome opening angles as compared to relaxed or positively supercoiled DNA. FCS experiments show that nucleosomes reconstituted on negatively superhelical DNA are more resistant to salt-induced destabilization, as seen by reduced H2A-H2B dimer eviction from the nucleosome. Our results show that changes in DNA topology, e.g. during transcription elongation, affect the accessibility of nucleosomal DNA.</description><identifier>ISSN: 0953-8984</identifier><identifier>EISSN: 1361-648X</identifier><identifier>DOI: 10.1088/0953-8984/27/6/064105</identifier><identifier>PMID: 25563201</identifier><identifier>CODEN: JCOMEL</identifier><language>eng</language><publisher>England: IOP Publishing</publisher><subject>Accessibility ; atomic force spectroscopy ; Condensed matter ; Density ; Deoxyribonucleic acid ; DNA, Superhelical - chemistry ; Elongation ; Fluorescence ; fluorescence correlation spectroscopy ; Fluorescent Dyes - chemistry ; histone ; Nucleosomes - chemistry ; Plasmids - genetics ; Stability ; Strain ; supercoiled DNA</subject><ispartof>Journal of physics. Condensed matter, 2015-02, Vol.27 (6), p.064105-7</ispartof><rights>2015 IOP Publishing Ltd</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c514t-483082a8ea8fac6dc99c10ac763220ed48594da5d6f480ec9c657dcce5f664fc3</citedby><cites>FETCH-LOGICAL-c514t-483082a8ea8fac6dc99c10ac763220ed48594da5d6f480ec9c657dcce5f664fc3</cites><orcidid>0000-0001-8600-0666</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://iopscience.iop.org/article/10.1088/0953-8984/27/6/064105/pdf$$EPDF$$P50$$Giop$$H</linktopdf><link.rule.ids>314,780,784,27924,27925,53846,53893</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/25563201$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Elbel, Tabea</creatorcontrib><creatorcontrib>Langowski, Jörg</creatorcontrib><title>The effect of DNA supercoiling on nucleosome structure and stability</title><title>Journal of physics. Condensed matter</title><addtitle>JPhysCM</addtitle><addtitle>J. Phys.: Condens. Matter</addtitle><description>Nucleosomes have to open to allow access to DNA in transcription, replication, and DNA damage repair. Changes in DNA torsional strain (e.g. during transcription elongation) influence the accessibility of nucleosomal DNA. Here we investigated the effect of DNA supercoiling-induced torsional strain on nucleosome structure and stability by scanning force microscopy (SFM) and fluorescence correlation spectroscopy (FCS). Nucleosomes were reconstituted onto 2.7 kb DNA plasmids with varying superhelical densities. The SFM results show a clear dependence of the amount of DNA wrapped around the nucleosome core on the strength and type of supercoiling. Negative supercoiling led to smaller nucleosome opening angles as compared to relaxed or positively supercoiled DNA. FCS experiments show that nucleosomes reconstituted on negatively superhelical DNA are more resistant to salt-induced destabilization, as seen by reduced H2A-H2B dimer eviction from the nucleosome. Our results show that changes in DNA topology, e.g. during transcription elongation, affect the accessibility of nucleosomal DNA.</description><subject>Accessibility</subject><subject>atomic force spectroscopy</subject><subject>Condensed matter</subject><subject>Density</subject><subject>Deoxyribonucleic acid</subject><subject>DNA, Superhelical - chemistry</subject><subject>Elongation</subject><subject>Fluorescence</subject><subject>fluorescence correlation spectroscopy</subject><subject>Fluorescent Dyes - chemistry</subject><subject>histone</subject><subject>Nucleosomes - chemistry</subject><subject>Plasmids - genetics</subject><subject>Stability</subject><subject>Strain</subject><subject>supercoiled DNA</subject><issn>0953-8984</issn><issn>1361-648X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqNkc1LxDAQxYMoun78CUpP4qVu0iZpelx2_QLRywreQpxOtNI2NWkP-9-bZVU8iHoaBn5v3vAeIceMnjOq1JSWIk9Vqfg0K6ZySiVnVGyRCcslSyVXj9tk8sXskf0QXimlXOV8l-xlQsg8o2xCFssXTNBahCFxNlnczZIw9ujB1U3dPSeuS7oRGnTBtZiEwY8wjB4T01VxM0-RGlaHZMeaJuDRxzwgD5cXy_l1ent_dTOf3aYgGB_SaE5VZhQaZQ3ICsoSGDVQxF8yihVXouSVEZW0XFGEEqQoKgAUVkpuIT8gZ5u7vXdvI4ZBt3UAbBrToRuDZgUtCx5F8l8oKzJeqr9RKTLOpJQ0omKDgncheLS693Vr_Eozqte16HXkeh25zgot9aaWqDv5sBifWqy-VJ89ROB0A9Su169u9F3MUUP7_YruKxtB9gP4u_s7ebGinA</recordid><startdate>20150218</startdate><enddate>20150218</enddate><creator>Elbel, Tabea</creator><creator>Langowski, Jörg</creator><general>IOP Publishing</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>7TM</scope><scope>7U5</scope><scope>8FD</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0001-8600-0666</orcidid></search><sort><creationdate>20150218</creationdate><title>The effect of DNA supercoiling on nucleosome structure and stability</title><author>Elbel, Tabea ; Langowski, Jörg</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c514t-483082a8ea8fac6dc99c10ac763220ed48594da5d6f480ec9c657dcce5f664fc3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Accessibility</topic><topic>atomic force spectroscopy</topic><topic>Condensed matter</topic><topic>Density</topic><topic>Deoxyribonucleic acid</topic><topic>DNA, Superhelical - chemistry</topic><topic>Elongation</topic><topic>Fluorescence</topic><topic>fluorescence correlation spectroscopy</topic><topic>Fluorescent Dyes - chemistry</topic><topic>histone</topic><topic>Nucleosomes - chemistry</topic><topic>Plasmids - genetics</topic><topic>Stability</topic><topic>Strain</topic><topic>supercoiled DNA</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Elbel, Tabea</creatorcontrib><creatorcontrib>Langowski, Jörg</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>Nucleic Acids Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Journal of physics. Condensed matter</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Elbel, Tabea</au><au>Langowski, Jörg</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The effect of DNA supercoiling on nucleosome structure and stability</atitle><jtitle>Journal of physics. Condensed matter</jtitle><stitle>JPhysCM</stitle><addtitle>J. Phys.: Condens. Matter</addtitle><date>2015-02-18</date><risdate>2015</risdate><volume>27</volume><issue>6</issue><spage>064105</spage><epage>7</epage><pages>064105-7</pages><issn>0953-8984</issn><eissn>1361-648X</eissn><coden>JCOMEL</coden><abstract>Nucleosomes have to open to allow access to DNA in transcription, replication, and DNA damage repair. Changes in DNA torsional strain (e.g. during transcription elongation) influence the accessibility of nucleosomal DNA. Here we investigated the effect of DNA supercoiling-induced torsional strain on nucleosome structure and stability by scanning force microscopy (SFM) and fluorescence correlation spectroscopy (FCS). Nucleosomes were reconstituted onto 2.7 kb DNA plasmids with varying superhelical densities. The SFM results show a clear dependence of the amount of DNA wrapped around the nucleosome core on the strength and type of supercoiling. Negative supercoiling led to smaller nucleosome opening angles as compared to relaxed or positively supercoiled DNA. FCS experiments show that nucleosomes reconstituted on negatively superhelical DNA are more resistant to salt-induced destabilization, as seen by reduced H2A-H2B dimer eviction from the nucleosome. Our results show that changes in DNA topology, e.g. during transcription elongation, affect the accessibility of nucleosomal DNA.</abstract><cop>England</cop><pub>IOP Publishing</pub><pmid>25563201</pmid><doi>10.1088/0953-8984/27/6/064105</doi><tpages>7</tpages><orcidid>https://orcid.org/0000-0001-8600-0666</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0953-8984 |
ispartof | Journal of physics. Condensed matter, 2015-02, Vol.27 (6), p.064105-7 |
issn | 0953-8984 1361-648X |
language | eng |
recordid | cdi_proquest_miscellaneous_1709746576 |
source | MEDLINE; Institute of Physics Journals |
subjects | Accessibility atomic force spectroscopy Condensed matter Density Deoxyribonucleic acid DNA, Superhelical - chemistry Elongation Fluorescence fluorescence correlation spectroscopy Fluorescent Dyes - chemistry histone Nucleosomes - chemistry Plasmids - genetics Stability Strain supercoiled DNA |
title | The effect of DNA supercoiling on nucleosome structure and stability |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-03T20%3A56%3A53IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20effect%20of%20DNA%20supercoiling%20on%20nucleosome%20structure%20and%20stability&rft.jtitle=Journal%20of%20physics.%20Condensed%20matter&rft.au=Elbel,%20Tabea&rft.date=2015-02-18&rft.volume=27&rft.issue=6&rft.spage=064105&rft.epage=7&rft.pages=064105-7&rft.issn=0953-8984&rft.eissn=1361-648X&rft.coden=JCOMEL&rft_id=info:doi/10.1088/0953-8984/27/6/064105&rft_dat=%3Cproquest_pubme%3E1709746576%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1652416660&rft_id=info:pmid/25563201&rfr_iscdi=true |