In Situ Generation of Tunable Porosity Gradients in Hydrogel-Based Scaffolds for Microfluidic Cell Culture
Compared with preformed anisotropic matrices, an anisotropic matrix that allows users to alter its properties and structure in situ after synthesis offers the important advantage of being able to mimic dynamic in vivo microenvironments, such as in tissues undergoing morphogenesis or in wounds underg...
Gespeichert in:
Veröffentlicht in: | Advanced healthcare materials 2014-10, Vol.3 (10), p.1655-1670 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1670 |
---|---|
container_issue | 10 |
container_start_page | 1655 |
container_title | Advanced healthcare materials |
container_volume | 3 |
creator | Al-Abboodi, Aswan Tjeung, Ricky Doran, Pauline M. Yeo, Leslie Y. Friend, James Yik Chan, Peggy Pui |
description | Compared with preformed anisotropic matrices, an anisotropic matrix that allows users to alter its properties and structure in situ after synthesis offers the important advantage of being able to mimic dynamic in vivo microenvironments, such as in tissues undergoing morphogenesis or in wounds undergoing tissue repair. In this study, porous gradients are generated in situ in a hydrogel comprising enzymatically crosslinked gelatin hydroxyphenylpropionic acid (GTN–HPA) conjugate and carboxylmethyl cellulose tyramine (CMC–TYR) conjugate. The GTN–HPA component acts as the backbone of the hydrogel, while CMC–TYR acts as a biocompatible sacrificial polymer. The hydrogel is then used to immobilize HT1080 human fibrosarcoma cells in a microfluidic chamber. After diffusion of a biocompatible cellulase enzyme through the hydrogel in a spatially controlled manner, selective digestion of the CMC component of the hydrogel by the cellulase gives rise to a porosity gradient in situ instead of requiring its formation during hydrogel synthesis as with other methods. The influence of this in situ tunable porosity gradient on the chemotactic response of cancer cells is subsequently studied both in the absence and presence of chemoattractant. This platform illustrates the potential of hydrogel‐based microfluidics to mimic the 3D in vivo microenvironment for tissue engineering and diagnostic applications.
Spatial anisotropy is common and critical in in vivo cellular microenvironments. This study demonstrates a novel and facile method for generating continuous porous and chemical gradients in situ in a hydrogel‐based microfluidic device. The device allows users to tailor the scaffold structure in situ to study cell responses in a dynamic, biomimetic, anisotropic microenvironment. |
doi_str_mv | 10.1002/adhm.201400072 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1709746444</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1709746444</sourcerecordid><originalsourceid>FETCH-LOGICAL-c6802-3a227b0f90aa4a833b99ebb1df36d408bd319b47088d4379f19d87809dc9338a3</originalsourceid><addsrcrecordid>eNqN0U1v1DAQBuAIgWhVeuWILCEkLln8FX8cS4BsRVuQWujRcmIbvHjjYieC_fd4tcuCuJSTfXhmPOO3qp4iuEAQ4lfafF0vMEQUQsjxg-oYI4lrzBr58HCn8Kg6zXlVCGQNYgI9ro4w5QgRyo6r1fkIrv00g86ONunJxxFEB27mUffBgo8xxeynDeiSNt6OUwZ-BMuNSfGLDfVrna0B14N2LgaTgYsJXPohRRdmb_wAWhsCaOcwzck-qR45HbI93Z8n1ad3b2_aZX3xoTtvzy7qgQmIa6Ix5j10EmpNtSCkl9L2PTKOMEOh6A1BsqccCmEo4dIhaQQXUJpBEiI0Oale7vrepfh9tnlSa5-HMogebZyzQhxKThml9H8oorzhEN9PGYK8YQ3f0uf_0FWc01h2LgpKwrhEpKjFTpXvyjlZp-6SX-u0UQiqbbxqG686xFsKnu3bzv3amgP_HWYBL_ZA50EHl_Q4-PzHCcE4wbI4uXM_fLCbe55VZ2-Wl38PUe9qfZ7sz0OtTt9Uac4bdXvVKXH1ubt937WKk190tMqL</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1609367913</pqid></control><display><type>article</type><title>In Situ Generation of Tunable Porosity Gradients in Hydrogel-Based Scaffolds for Microfluidic Cell Culture</title><source>MEDLINE</source><source>Wiley Online Library Journals Frontfile Complete</source><creator>Al-Abboodi, Aswan ; Tjeung, Ricky ; Doran, Pauline M. ; Yeo, Leslie Y. ; Friend, James ; Yik Chan, Peggy Pui</creator><creatorcontrib>Al-Abboodi, Aswan ; Tjeung, Ricky ; Doran, Pauline M. ; Yeo, Leslie Y. ; Friend, James ; Yik Chan, Peggy Pui</creatorcontrib><description>Compared with preformed anisotropic matrices, an anisotropic matrix that allows users to alter its properties and structure in situ after synthesis offers the important advantage of being able to mimic dynamic in vivo microenvironments, such as in tissues undergoing morphogenesis or in wounds undergoing tissue repair. In this study, porous gradients are generated in situ in a hydrogel comprising enzymatically crosslinked gelatin hydroxyphenylpropionic acid (GTN–HPA) conjugate and carboxylmethyl cellulose tyramine (CMC–TYR) conjugate. The GTN–HPA component acts as the backbone of the hydrogel, while CMC–TYR acts as a biocompatible sacrificial polymer. The hydrogel is then used to immobilize HT1080 human fibrosarcoma cells in a microfluidic chamber. After diffusion of a biocompatible cellulase enzyme through the hydrogel in a spatially controlled manner, selective digestion of the CMC component of the hydrogel by the cellulase gives rise to a porosity gradient in situ instead of requiring its formation during hydrogel synthesis as with other methods. The influence of this in situ tunable porosity gradient on the chemotactic response of cancer cells is subsequently studied both in the absence and presence of chemoattractant. This platform illustrates the potential of hydrogel‐based microfluidics to mimic the 3D in vivo microenvironment for tissue engineering and diagnostic applications.
Spatial anisotropy is common and critical in in vivo cellular microenvironments. This study demonstrates a novel and facile method for generating continuous porous and chemical gradients in situ in a hydrogel‐based microfluidic device. The device allows users to tailor the scaffold structure in situ to study cell responses in a dynamic, biomimetic, anisotropic microenvironment.</description><identifier>ISSN: 2192-2640</identifier><identifier>EISSN: 2192-2659</identifier><identifier>DOI: 10.1002/adhm.201400072</identifier><identifier>PMID: 24711346</identifier><language>eng</language><publisher>Weinheim: Blackwell Publishing Ltd</publisher><subject>Anisotropy ; Biocompatibility ; Biological and medical sciences ; Biomedical materials ; Cell Culture Techniques - instrumentation ; Cell Culture Techniques - methods ; Cell Line, Tumor ; Cell Movement ; Cell Survival ; Cellulase ; chemotaxis ; Gelatin - chemistry ; Humans ; Hydrogel, Polyethylene Glycol Dimethacrylate - chemistry ; Hydrogels ; In vivo testing ; Medical sciences ; Microfluidic Analytical Techniques - instrumentation ; Microfluidic Analytical Techniques - methods ; Microfluidics ; Porosity ; porosity gradient ; porous hydrogels ; Propionates - chemistry ; spatial anisotropy ; Surgery (general aspects). Transplantations, organ and tissue grafts. Graft diseases ; Surgical implants ; Technology. Biomaterials. Equipments ; Tissue Scaffolds - chemistry</subject><ispartof>Advanced healthcare materials, 2014-10, Vol.3 (10), p.1655-1670</ispartof><rights>2014 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim</rights><rights>2015 INIST-CNRS</rights><rights>2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.</rights><rights>Copyright © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c6802-3a227b0f90aa4a833b99ebb1df36d408bd319b47088d4379f19d87809dc9338a3</citedby><cites>FETCH-LOGICAL-c6802-3a227b0f90aa4a833b99ebb1df36d408bd319b47088d4379f19d87809dc9338a3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fadhm.201400072$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fadhm.201400072$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=28867329$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/24711346$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Al-Abboodi, Aswan</creatorcontrib><creatorcontrib>Tjeung, Ricky</creatorcontrib><creatorcontrib>Doran, Pauline M.</creatorcontrib><creatorcontrib>Yeo, Leslie Y.</creatorcontrib><creatorcontrib>Friend, James</creatorcontrib><creatorcontrib>Yik Chan, Peggy Pui</creatorcontrib><title>In Situ Generation of Tunable Porosity Gradients in Hydrogel-Based Scaffolds for Microfluidic Cell Culture</title><title>Advanced healthcare materials</title><addtitle>Adv. Healthcare Mater</addtitle><description>Compared with preformed anisotropic matrices, an anisotropic matrix that allows users to alter its properties and structure in situ after synthesis offers the important advantage of being able to mimic dynamic in vivo microenvironments, such as in tissues undergoing morphogenesis or in wounds undergoing tissue repair. In this study, porous gradients are generated in situ in a hydrogel comprising enzymatically crosslinked gelatin hydroxyphenylpropionic acid (GTN–HPA) conjugate and carboxylmethyl cellulose tyramine (CMC–TYR) conjugate. The GTN–HPA component acts as the backbone of the hydrogel, while CMC–TYR acts as a biocompatible sacrificial polymer. The hydrogel is then used to immobilize HT1080 human fibrosarcoma cells in a microfluidic chamber. After diffusion of a biocompatible cellulase enzyme through the hydrogel in a spatially controlled manner, selective digestion of the CMC component of the hydrogel by the cellulase gives rise to a porosity gradient in situ instead of requiring its formation during hydrogel synthesis as with other methods. The influence of this in situ tunable porosity gradient on the chemotactic response of cancer cells is subsequently studied both in the absence and presence of chemoattractant. This platform illustrates the potential of hydrogel‐based microfluidics to mimic the 3D in vivo microenvironment for tissue engineering and diagnostic applications.
Spatial anisotropy is common and critical in in vivo cellular microenvironments. This study demonstrates a novel and facile method for generating continuous porous and chemical gradients in situ in a hydrogel‐based microfluidic device. The device allows users to tailor the scaffold structure in situ to study cell responses in a dynamic, biomimetic, anisotropic microenvironment.</description><subject>Anisotropy</subject><subject>Biocompatibility</subject><subject>Biological and medical sciences</subject><subject>Biomedical materials</subject><subject>Cell Culture Techniques - instrumentation</subject><subject>Cell Culture Techniques - methods</subject><subject>Cell Line, Tumor</subject><subject>Cell Movement</subject><subject>Cell Survival</subject><subject>Cellulase</subject><subject>chemotaxis</subject><subject>Gelatin - chemistry</subject><subject>Humans</subject><subject>Hydrogel, Polyethylene Glycol Dimethacrylate - chemistry</subject><subject>Hydrogels</subject><subject>In vivo testing</subject><subject>Medical sciences</subject><subject>Microfluidic Analytical Techniques - instrumentation</subject><subject>Microfluidic Analytical Techniques - methods</subject><subject>Microfluidics</subject><subject>Porosity</subject><subject>porosity gradient</subject><subject>porous hydrogels</subject><subject>Propionates - chemistry</subject><subject>spatial anisotropy</subject><subject>Surgery (general aspects). Transplantations, organ and tissue grafts. Graft diseases</subject><subject>Surgical implants</subject><subject>Technology. Biomaterials. Equipments</subject><subject>Tissue Scaffolds - chemistry</subject><issn>2192-2640</issn><issn>2192-2659</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqN0U1v1DAQBuAIgWhVeuWILCEkLln8FX8cS4BsRVuQWujRcmIbvHjjYieC_fd4tcuCuJSTfXhmPOO3qp4iuEAQ4lfafF0vMEQUQsjxg-oYI4lrzBr58HCn8Kg6zXlVCGQNYgI9ro4w5QgRyo6r1fkIrv00g86ONunJxxFEB27mUffBgo8xxeynDeiSNt6OUwZ-BMuNSfGLDfVrna0B14N2LgaTgYsJXPohRRdmb_wAWhsCaOcwzck-qR45HbI93Z8n1ad3b2_aZX3xoTtvzy7qgQmIa6Ix5j10EmpNtSCkl9L2PTKOMEOh6A1BsqccCmEo4dIhaQQXUJpBEiI0Oale7vrepfh9tnlSa5-HMogebZyzQhxKThml9H8oorzhEN9PGYK8YQ3f0uf_0FWc01h2LgpKwrhEpKjFTpXvyjlZp-6SX-u0UQiqbbxqG686xFsKnu3bzv3amgP_HWYBL_ZA50EHl_Q4-PzHCcE4wbI4uXM_fLCbe55VZ2-Wl38PUe9qfZ7sz0OtTt9Uac4bdXvVKXH1ubt937WKk190tMqL</recordid><startdate>201410</startdate><enddate>201410</enddate><creator>Al-Abboodi, Aswan</creator><creator>Tjeung, Ricky</creator><creator>Doran, Pauline M.</creator><creator>Yeo, Leslie Y.</creator><creator>Friend, James</creator><creator>Yik Chan, Peggy Pui</creator><general>Blackwell Publishing Ltd</general><general>Wiley-VCH</general><general>Wiley Subscription Services, Inc</general><scope>BSCLL</scope><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QP</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7T5</scope><scope>7TA</scope><scope>7TB</scope><scope>7TM</scope><scope>7TO</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>H8G</scope><scope>H94</scope><scope>JG9</scope><scope>JQ2</scope><scope>K9.</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>7X8</scope><scope>7QO</scope><scope>P64</scope></search><sort><creationdate>201410</creationdate><title>In Situ Generation of Tunable Porosity Gradients in Hydrogel-Based Scaffolds for Microfluidic Cell Culture</title><author>Al-Abboodi, Aswan ; Tjeung, Ricky ; Doran, Pauline M. ; Yeo, Leslie Y. ; Friend, James ; Yik Chan, Peggy Pui</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c6802-3a227b0f90aa4a833b99ebb1df36d408bd319b47088d4379f19d87809dc9338a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Anisotropy</topic><topic>Biocompatibility</topic><topic>Biological and medical sciences</topic><topic>Biomedical materials</topic><topic>Cell Culture Techniques - instrumentation</topic><topic>Cell Culture Techniques - methods</topic><topic>Cell Line, Tumor</topic><topic>Cell Movement</topic><topic>Cell Survival</topic><topic>Cellulase</topic><topic>chemotaxis</topic><topic>Gelatin - chemistry</topic><topic>Humans</topic><topic>Hydrogel, Polyethylene Glycol Dimethacrylate - chemistry</topic><topic>Hydrogels</topic><topic>In vivo testing</topic><topic>Medical sciences</topic><topic>Microfluidic Analytical Techniques - instrumentation</topic><topic>Microfluidic Analytical Techniques - methods</topic><topic>Microfluidics</topic><topic>Porosity</topic><topic>porosity gradient</topic><topic>porous hydrogels</topic><topic>Propionates - chemistry</topic><topic>spatial anisotropy</topic><topic>Surgery (general aspects). Transplantations, organ and tissue grafts. Graft diseases</topic><topic>Surgical implants</topic><topic>Technology. Biomaterials. Equipments</topic><topic>Tissue Scaffolds - chemistry</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Al-Abboodi, Aswan</creatorcontrib><creatorcontrib>Tjeung, Ricky</creatorcontrib><creatorcontrib>Doran, Pauline M.</creatorcontrib><creatorcontrib>Yeo, Leslie Y.</creatorcontrib><creatorcontrib>Friend, James</creatorcontrib><creatorcontrib>Yik Chan, Peggy Pui</creatorcontrib><collection>Istex</collection><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Immunology Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>MEDLINE - Academic</collection><collection>Biotechnology Research Abstracts</collection><collection>Biotechnology and BioEngineering Abstracts</collection><jtitle>Advanced healthcare materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Al-Abboodi, Aswan</au><au>Tjeung, Ricky</au><au>Doran, Pauline M.</au><au>Yeo, Leslie Y.</au><au>Friend, James</au><au>Yik Chan, Peggy Pui</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>In Situ Generation of Tunable Porosity Gradients in Hydrogel-Based Scaffolds for Microfluidic Cell Culture</atitle><jtitle>Advanced healthcare materials</jtitle><addtitle>Adv. Healthcare Mater</addtitle><date>2014-10</date><risdate>2014</risdate><volume>3</volume><issue>10</issue><spage>1655</spage><epage>1670</epage><pages>1655-1670</pages><issn>2192-2640</issn><eissn>2192-2659</eissn><abstract>Compared with preformed anisotropic matrices, an anisotropic matrix that allows users to alter its properties and structure in situ after synthesis offers the important advantage of being able to mimic dynamic in vivo microenvironments, such as in tissues undergoing morphogenesis or in wounds undergoing tissue repair. In this study, porous gradients are generated in situ in a hydrogel comprising enzymatically crosslinked gelatin hydroxyphenylpropionic acid (GTN–HPA) conjugate and carboxylmethyl cellulose tyramine (CMC–TYR) conjugate. The GTN–HPA component acts as the backbone of the hydrogel, while CMC–TYR acts as a biocompatible sacrificial polymer. The hydrogel is then used to immobilize HT1080 human fibrosarcoma cells in a microfluidic chamber. After diffusion of a biocompatible cellulase enzyme through the hydrogel in a spatially controlled manner, selective digestion of the CMC component of the hydrogel by the cellulase gives rise to a porosity gradient in situ instead of requiring its formation during hydrogel synthesis as with other methods. The influence of this in situ tunable porosity gradient on the chemotactic response of cancer cells is subsequently studied both in the absence and presence of chemoattractant. This platform illustrates the potential of hydrogel‐based microfluidics to mimic the 3D in vivo microenvironment for tissue engineering and diagnostic applications.
Spatial anisotropy is common and critical in in vivo cellular microenvironments. This study demonstrates a novel and facile method for generating continuous porous and chemical gradients in situ in a hydrogel‐based microfluidic device. The device allows users to tailor the scaffold structure in situ to study cell responses in a dynamic, biomimetic, anisotropic microenvironment.</abstract><cop>Weinheim</cop><pub>Blackwell Publishing Ltd</pub><pmid>24711346</pmid><doi>10.1002/adhm.201400072</doi><tpages>16</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2192-2640 |
ispartof | Advanced healthcare materials, 2014-10, Vol.3 (10), p.1655-1670 |
issn | 2192-2640 2192-2659 |
language | eng |
recordid | cdi_proquest_miscellaneous_1709746444 |
source | MEDLINE; Wiley Online Library Journals Frontfile Complete |
subjects | Anisotropy Biocompatibility Biological and medical sciences Biomedical materials Cell Culture Techniques - instrumentation Cell Culture Techniques - methods Cell Line, Tumor Cell Movement Cell Survival Cellulase chemotaxis Gelatin - chemistry Humans Hydrogel, Polyethylene Glycol Dimethacrylate - chemistry Hydrogels In vivo testing Medical sciences Microfluidic Analytical Techniques - instrumentation Microfluidic Analytical Techniques - methods Microfluidics Porosity porosity gradient porous hydrogels Propionates - chemistry spatial anisotropy Surgery (general aspects). Transplantations, organ and tissue grafts. Graft diseases Surgical implants Technology. Biomaterials. Equipments Tissue Scaffolds - chemistry |
title | In Situ Generation of Tunable Porosity Gradients in Hydrogel-Based Scaffolds for Microfluidic Cell Culture |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-29T13%3A32%3A03IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=In%20Situ%20Generation%20of%20Tunable%20Porosity%20Gradients%20in%20Hydrogel-Based%20Scaffolds%20for%20Microfluidic%20Cell%20Culture&rft.jtitle=Advanced%20healthcare%20materials&rft.au=Al-Abboodi,%20Aswan&rft.date=2014-10&rft.volume=3&rft.issue=10&rft.spage=1655&rft.epage=1670&rft.pages=1655-1670&rft.issn=2192-2640&rft.eissn=2192-2659&rft_id=info:doi/10.1002/adhm.201400072&rft_dat=%3Cproquest_cross%3E1709746444%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1609367913&rft_id=info:pmid/24711346&rfr_iscdi=true |