In Situ Generation of Tunable Porosity Gradients in Hydrogel-Based Scaffolds for Microfluidic Cell Culture

Compared with preformed anisotropic matrices, an anisotropic matrix that allows users to alter its properties and structure in situ after synthesis offers the important advantage of being able to mimic dynamic in vivo microenvironments, such as in tissues undergoing morphogenesis or in wounds underg...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Advanced healthcare materials 2014-10, Vol.3 (10), p.1655-1670
Hauptverfasser: Al-Abboodi, Aswan, Tjeung, Ricky, Doran, Pauline M., Yeo, Leslie Y., Friend, James, Yik Chan, Peggy Pui
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1670
container_issue 10
container_start_page 1655
container_title Advanced healthcare materials
container_volume 3
creator Al-Abboodi, Aswan
Tjeung, Ricky
Doran, Pauline M.
Yeo, Leslie Y.
Friend, James
Yik Chan, Peggy Pui
description Compared with preformed anisotropic matrices, an anisotropic matrix that allows users to alter its properties and structure in situ after synthesis offers the important advantage of being able to mimic dynamic in vivo microenvironments, such as in tissues undergoing morphogenesis or in wounds undergoing tissue repair. In this study, porous gradients are generated in situ in a hydrogel comprising enzymatically crosslinked gelatin hydroxyphenylpropionic acid (GTN–HPA) conjugate and carboxylmethyl cellulose tyramine (CMC–TYR) conjugate. The GTN–HPA component acts as the backbone of the hydrogel, while CMC–TYR acts as a biocompatible sacrificial polymer. The hydrogel is then used to immobilize HT1080 human fibrosarcoma cells in a microfluidic chamber. After diffusion of a biocompatible cellulase enzyme through the hydrogel in a spatially controlled manner, selective digestion of the CMC component of the hydrogel by the cellulase gives rise to a porosity gradient in situ instead of requiring its formation during hydrogel synthesis as with other methods. The influence of this in situ tunable porosity gradient on the chemotactic response of cancer cells is subsequently studied both in the absence and presence of chemoattractant. This platform illustrates the potential of hydrogel‐based microfluidics to mimic the 3D in vivo microenvironment for tissue engineering and diagnostic applications. Spatial anisotropy is common and critical in in vivo cellular microenvironments. This study demonstrates a novel and facile method for generating continuous porous and chemical gradients in situ in a hydrogel‐based microfluidic device. The device allows users to tailor the scaffold structure in situ to study cell responses in a dynamic, biomimetic, anisotropic microenvironment.
doi_str_mv 10.1002/adhm.201400072
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1709746444</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1709746444</sourcerecordid><originalsourceid>FETCH-LOGICAL-c6802-3a227b0f90aa4a833b99ebb1df36d408bd319b47088d4379f19d87809dc9338a3</originalsourceid><addsrcrecordid>eNqN0U1v1DAQBuAIgWhVeuWILCEkLln8FX8cS4BsRVuQWujRcmIbvHjjYieC_fd4tcuCuJSTfXhmPOO3qp4iuEAQ4lfafF0vMEQUQsjxg-oYI4lrzBr58HCn8Kg6zXlVCGQNYgI9ro4w5QgRyo6r1fkIrv00g86ONunJxxFEB27mUffBgo8xxeynDeiSNt6OUwZ-BMuNSfGLDfVrna0B14N2LgaTgYsJXPohRRdmb_wAWhsCaOcwzck-qR45HbI93Z8n1ad3b2_aZX3xoTtvzy7qgQmIa6Ix5j10EmpNtSCkl9L2PTKOMEOh6A1BsqccCmEo4dIhaQQXUJpBEiI0Oale7vrepfh9tnlSa5-HMogebZyzQhxKThml9H8oorzhEN9PGYK8YQ3f0uf_0FWc01h2LgpKwrhEpKjFTpXvyjlZp-6SX-u0UQiqbbxqG686xFsKnu3bzv3amgP_HWYBL_ZA50EHl_Q4-PzHCcE4wbI4uXM_fLCbe55VZ2-Wl38PUe9qfZ7sz0OtTt9Uac4bdXvVKXH1ubt937WKk190tMqL</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1609367913</pqid></control><display><type>article</type><title>In Situ Generation of Tunable Porosity Gradients in Hydrogel-Based Scaffolds for Microfluidic Cell Culture</title><source>MEDLINE</source><source>Wiley Online Library Journals Frontfile Complete</source><creator>Al-Abboodi, Aswan ; Tjeung, Ricky ; Doran, Pauline M. ; Yeo, Leslie Y. ; Friend, James ; Yik Chan, Peggy Pui</creator><creatorcontrib>Al-Abboodi, Aswan ; Tjeung, Ricky ; Doran, Pauline M. ; Yeo, Leslie Y. ; Friend, James ; Yik Chan, Peggy Pui</creatorcontrib><description>Compared with preformed anisotropic matrices, an anisotropic matrix that allows users to alter its properties and structure in situ after synthesis offers the important advantage of being able to mimic dynamic in vivo microenvironments, such as in tissues undergoing morphogenesis or in wounds undergoing tissue repair. In this study, porous gradients are generated in situ in a hydrogel comprising enzymatically crosslinked gelatin hydroxyphenylpropionic acid (GTN–HPA) conjugate and carboxylmethyl cellulose tyramine (CMC–TYR) conjugate. The GTN–HPA component acts as the backbone of the hydrogel, while CMC–TYR acts as a biocompatible sacrificial polymer. The hydrogel is then used to immobilize HT1080 human fibrosarcoma cells in a microfluidic chamber. After diffusion of a biocompatible cellulase enzyme through the hydrogel in a spatially controlled manner, selective digestion of the CMC component of the hydrogel by the cellulase gives rise to a porosity gradient in situ instead of requiring its formation during hydrogel synthesis as with other methods. The influence of this in situ tunable porosity gradient on the chemotactic response of cancer cells is subsequently studied both in the absence and presence of chemoattractant. This platform illustrates the potential of hydrogel‐based microfluidics to mimic the 3D in vivo microenvironment for tissue engineering and diagnostic applications. Spatial anisotropy is common and critical in in vivo cellular microenvironments. This study demonstrates a novel and facile method for generating continuous porous and chemical gradients in situ in a hydrogel‐based microfluidic device. The device allows users to tailor the scaffold structure in situ to study cell responses in a dynamic, biomimetic, anisotropic microenvironment.</description><identifier>ISSN: 2192-2640</identifier><identifier>EISSN: 2192-2659</identifier><identifier>DOI: 10.1002/adhm.201400072</identifier><identifier>PMID: 24711346</identifier><language>eng</language><publisher>Weinheim: Blackwell Publishing Ltd</publisher><subject>Anisotropy ; Biocompatibility ; Biological and medical sciences ; Biomedical materials ; Cell Culture Techniques - instrumentation ; Cell Culture Techniques - methods ; Cell Line, Tumor ; Cell Movement ; Cell Survival ; Cellulase ; chemotaxis ; Gelatin - chemistry ; Humans ; Hydrogel, Polyethylene Glycol Dimethacrylate - chemistry ; Hydrogels ; In vivo testing ; Medical sciences ; Microfluidic Analytical Techniques - instrumentation ; Microfluidic Analytical Techniques - methods ; Microfluidics ; Porosity ; porosity gradient ; porous hydrogels ; Propionates - chemistry ; spatial anisotropy ; Surgery (general aspects). Transplantations, organ and tissue grafts. Graft diseases ; Surgical implants ; Technology. Biomaterials. Equipments ; Tissue Scaffolds - chemistry</subject><ispartof>Advanced healthcare materials, 2014-10, Vol.3 (10), p.1655-1670</ispartof><rights>2014 WILEY‐VCH Verlag GmbH &amp; Co. KGaA, Weinheim</rights><rights>2015 INIST-CNRS</rights><rights>2014 WILEY-VCH Verlag GmbH &amp; Co. KGaA, Weinheim.</rights><rights>Copyright © 2014 WILEY-VCH Verlag GmbH &amp; Co. KGaA, Weinheim</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c6802-3a227b0f90aa4a833b99ebb1df36d408bd319b47088d4379f19d87809dc9338a3</citedby><cites>FETCH-LOGICAL-c6802-3a227b0f90aa4a833b99ebb1df36d408bd319b47088d4379f19d87809dc9338a3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fadhm.201400072$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fadhm.201400072$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=28867329$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/24711346$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Al-Abboodi, Aswan</creatorcontrib><creatorcontrib>Tjeung, Ricky</creatorcontrib><creatorcontrib>Doran, Pauline M.</creatorcontrib><creatorcontrib>Yeo, Leslie Y.</creatorcontrib><creatorcontrib>Friend, James</creatorcontrib><creatorcontrib>Yik Chan, Peggy Pui</creatorcontrib><title>In Situ Generation of Tunable Porosity Gradients in Hydrogel-Based Scaffolds for Microfluidic Cell Culture</title><title>Advanced healthcare materials</title><addtitle>Adv. Healthcare Mater</addtitle><description>Compared with preformed anisotropic matrices, an anisotropic matrix that allows users to alter its properties and structure in situ after synthesis offers the important advantage of being able to mimic dynamic in vivo microenvironments, such as in tissues undergoing morphogenesis or in wounds undergoing tissue repair. In this study, porous gradients are generated in situ in a hydrogel comprising enzymatically crosslinked gelatin hydroxyphenylpropionic acid (GTN–HPA) conjugate and carboxylmethyl cellulose tyramine (CMC–TYR) conjugate. The GTN–HPA component acts as the backbone of the hydrogel, while CMC–TYR acts as a biocompatible sacrificial polymer. The hydrogel is then used to immobilize HT1080 human fibrosarcoma cells in a microfluidic chamber. After diffusion of a biocompatible cellulase enzyme through the hydrogel in a spatially controlled manner, selective digestion of the CMC component of the hydrogel by the cellulase gives rise to a porosity gradient in situ instead of requiring its formation during hydrogel synthesis as with other methods. The influence of this in situ tunable porosity gradient on the chemotactic response of cancer cells is subsequently studied both in the absence and presence of chemoattractant. This platform illustrates the potential of hydrogel‐based microfluidics to mimic the 3D in vivo microenvironment for tissue engineering and diagnostic applications. Spatial anisotropy is common and critical in in vivo cellular microenvironments. This study demonstrates a novel and facile method for generating continuous porous and chemical gradients in situ in a hydrogel‐based microfluidic device. The device allows users to tailor the scaffold structure in situ to study cell responses in a dynamic, biomimetic, anisotropic microenvironment.</description><subject>Anisotropy</subject><subject>Biocompatibility</subject><subject>Biological and medical sciences</subject><subject>Biomedical materials</subject><subject>Cell Culture Techniques - instrumentation</subject><subject>Cell Culture Techniques - methods</subject><subject>Cell Line, Tumor</subject><subject>Cell Movement</subject><subject>Cell Survival</subject><subject>Cellulase</subject><subject>chemotaxis</subject><subject>Gelatin - chemistry</subject><subject>Humans</subject><subject>Hydrogel, Polyethylene Glycol Dimethacrylate - chemistry</subject><subject>Hydrogels</subject><subject>In vivo testing</subject><subject>Medical sciences</subject><subject>Microfluidic Analytical Techniques - instrumentation</subject><subject>Microfluidic Analytical Techniques - methods</subject><subject>Microfluidics</subject><subject>Porosity</subject><subject>porosity gradient</subject><subject>porous hydrogels</subject><subject>Propionates - chemistry</subject><subject>spatial anisotropy</subject><subject>Surgery (general aspects). Transplantations, organ and tissue grafts. Graft diseases</subject><subject>Surgical implants</subject><subject>Technology. Biomaterials. Equipments</subject><subject>Tissue Scaffolds - chemistry</subject><issn>2192-2640</issn><issn>2192-2659</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqN0U1v1DAQBuAIgWhVeuWILCEkLln8FX8cS4BsRVuQWujRcmIbvHjjYieC_fd4tcuCuJSTfXhmPOO3qp4iuEAQ4lfafF0vMEQUQsjxg-oYI4lrzBr58HCn8Kg6zXlVCGQNYgI9ro4w5QgRyo6r1fkIrv00g86ONunJxxFEB27mUffBgo8xxeynDeiSNt6OUwZ-BMuNSfGLDfVrna0B14N2LgaTgYsJXPohRRdmb_wAWhsCaOcwzck-qR45HbI93Z8n1ad3b2_aZX3xoTtvzy7qgQmIa6Ix5j10EmpNtSCkl9L2PTKOMEOh6A1BsqccCmEo4dIhaQQXUJpBEiI0Oale7vrepfh9tnlSa5-HMogebZyzQhxKThml9H8oorzhEN9PGYK8YQ3f0uf_0FWc01h2LgpKwrhEpKjFTpXvyjlZp-6SX-u0UQiqbbxqG686xFsKnu3bzv3amgP_HWYBL_ZA50EHl_Q4-PzHCcE4wbI4uXM_fLCbe55VZ2-Wl38PUe9qfZ7sz0OtTt9Uac4bdXvVKXH1ubt937WKk190tMqL</recordid><startdate>201410</startdate><enddate>201410</enddate><creator>Al-Abboodi, Aswan</creator><creator>Tjeung, Ricky</creator><creator>Doran, Pauline M.</creator><creator>Yeo, Leslie Y.</creator><creator>Friend, James</creator><creator>Yik Chan, Peggy Pui</creator><general>Blackwell Publishing Ltd</general><general>Wiley-VCH</general><general>Wiley Subscription Services, Inc</general><scope>BSCLL</scope><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QP</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7T5</scope><scope>7TA</scope><scope>7TB</scope><scope>7TM</scope><scope>7TO</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>H8G</scope><scope>H94</scope><scope>JG9</scope><scope>JQ2</scope><scope>K9.</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>7X8</scope><scope>7QO</scope><scope>P64</scope></search><sort><creationdate>201410</creationdate><title>In Situ Generation of Tunable Porosity Gradients in Hydrogel-Based Scaffolds for Microfluidic Cell Culture</title><author>Al-Abboodi, Aswan ; Tjeung, Ricky ; Doran, Pauline M. ; Yeo, Leslie Y. ; Friend, James ; Yik Chan, Peggy Pui</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c6802-3a227b0f90aa4a833b99ebb1df36d408bd319b47088d4379f19d87809dc9338a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Anisotropy</topic><topic>Biocompatibility</topic><topic>Biological and medical sciences</topic><topic>Biomedical materials</topic><topic>Cell Culture Techniques - instrumentation</topic><topic>Cell Culture Techniques - methods</topic><topic>Cell Line, Tumor</topic><topic>Cell Movement</topic><topic>Cell Survival</topic><topic>Cellulase</topic><topic>chemotaxis</topic><topic>Gelatin - chemistry</topic><topic>Humans</topic><topic>Hydrogel, Polyethylene Glycol Dimethacrylate - chemistry</topic><topic>Hydrogels</topic><topic>In vivo testing</topic><topic>Medical sciences</topic><topic>Microfluidic Analytical Techniques - instrumentation</topic><topic>Microfluidic Analytical Techniques - methods</topic><topic>Microfluidics</topic><topic>Porosity</topic><topic>porosity gradient</topic><topic>porous hydrogels</topic><topic>Propionates - chemistry</topic><topic>spatial anisotropy</topic><topic>Surgery (general aspects). Transplantations, organ and tissue grafts. Graft diseases</topic><topic>Surgical implants</topic><topic>Technology. Biomaterials. Equipments</topic><topic>Tissue Scaffolds - chemistry</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Al-Abboodi, Aswan</creatorcontrib><creatorcontrib>Tjeung, Ricky</creatorcontrib><creatorcontrib>Doran, Pauline M.</creatorcontrib><creatorcontrib>Yeo, Leslie Y.</creatorcontrib><creatorcontrib>Friend, James</creatorcontrib><creatorcontrib>Yik Chan, Peggy Pui</creatorcontrib><collection>Istex</collection><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Immunology Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>MEDLINE - Academic</collection><collection>Biotechnology Research Abstracts</collection><collection>Biotechnology and BioEngineering Abstracts</collection><jtitle>Advanced healthcare materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Al-Abboodi, Aswan</au><au>Tjeung, Ricky</au><au>Doran, Pauline M.</au><au>Yeo, Leslie Y.</au><au>Friend, James</au><au>Yik Chan, Peggy Pui</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>In Situ Generation of Tunable Porosity Gradients in Hydrogel-Based Scaffolds for Microfluidic Cell Culture</atitle><jtitle>Advanced healthcare materials</jtitle><addtitle>Adv. Healthcare Mater</addtitle><date>2014-10</date><risdate>2014</risdate><volume>3</volume><issue>10</issue><spage>1655</spage><epage>1670</epage><pages>1655-1670</pages><issn>2192-2640</issn><eissn>2192-2659</eissn><abstract>Compared with preformed anisotropic matrices, an anisotropic matrix that allows users to alter its properties and structure in situ after synthesis offers the important advantage of being able to mimic dynamic in vivo microenvironments, such as in tissues undergoing morphogenesis or in wounds undergoing tissue repair. In this study, porous gradients are generated in situ in a hydrogel comprising enzymatically crosslinked gelatin hydroxyphenylpropionic acid (GTN–HPA) conjugate and carboxylmethyl cellulose tyramine (CMC–TYR) conjugate. The GTN–HPA component acts as the backbone of the hydrogel, while CMC–TYR acts as a biocompatible sacrificial polymer. The hydrogel is then used to immobilize HT1080 human fibrosarcoma cells in a microfluidic chamber. After diffusion of a biocompatible cellulase enzyme through the hydrogel in a spatially controlled manner, selective digestion of the CMC component of the hydrogel by the cellulase gives rise to a porosity gradient in situ instead of requiring its formation during hydrogel synthesis as with other methods. The influence of this in situ tunable porosity gradient on the chemotactic response of cancer cells is subsequently studied both in the absence and presence of chemoattractant. This platform illustrates the potential of hydrogel‐based microfluidics to mimic the 3D in vivo microenvironment for tissue engineering and diagnostic applications. Spatial anisotropy is common and critical in in vivo cellular microenvironments. This study demonstrates a novel and facile method for generating continuous porous and chemical gradients in situ in a hydrogel‐based microfluidic device. The device allows users to tailor the scaffold structure in situ to study cell responses in a dynamic, biomimetic, anisotropic microenvironment.</abstract><cop>Weinheim</cop><pub>Blackwell Publishing Ltd</pub><pmid>24711346</pmid><doi>10.1002/adhm.201400072</doi><tpages>16</tpages></addata></record>
fulltext fulltext
identifier ISSN: 2192-2640
ispartof Advanced healthcare materials, 2014-10, Vol.3 (10), p.1655-1670
issn 2192-2640
2192-2659
language eng
recordid cdi_proquest_miscellaneous_1709746444
source MEDLINE; Wiley Online Library Journals Frontfile Complete
subjects Anisotropy
Biocompatibility
Biological and medical sciences
Biomedical materials
Cell Culture Techniques - instrumentation
Cell Culture Techniques - methods
Cell Line, Tumor
Cell Movement
Cell Survival
Cellulase
chemotaxis
Gelatin - chemistry
Humans
Hydrogel, Polyethylene Glycol Dimethacrylate - chemistry
Hydrogels
In vivo testing
Medical sciences
Microfluidic Analytical Techniques - instrumentation
Microfluidic Analytical Techniques - methods
Microfluidics
Porosity
porosity gradient
porous hydrogels
Propionates - chemistry
spatial anisotropy
Surgery (general aspects). Transplantations, organ and tissue grafts. Graft diseases
Surgical implants
Technology. Biomaterials. Equipments
Tissue Scaffolds - chemistry
title In Situ Generation of Tunable Porosity Gradients in Hydrogel-Based Scaffolds for Microfluidic Cell Culture
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-29T13%3A32%3A03IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=In%20Situ%20Generation%20of%20Tunable%20Porosity%20Gradients%20in%20Hydrogel-Based%20Scaffolds%20for%20Microfluidic%20Cell%20Culture&rft.jtitle=Advanced%20healthcare%20materials&rft.au=Al-Abboodi,%20Aswan&rft.date=2014-10&rft.volume=3&rft.issue=10&rft.spage=1655&rft.epage=1670&rft.pages=1655-1670&rft.issn=2192-2640&rft.eissn=2192-2659&rft_id=info:doi/10.1002/adhm.201400072&rft_dat=%3Cproquest_cross%3E1709746444%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1609367913&rft_id=info:pmid/24711346&rfr_iscdi=true