First-principles study of TiN/SiC/TiN interfaces in superhard nanocomposites

Heterostructures with one monolayer of interfacial SiC inserted between several B1(NaCl)-TiN (001) and (111) slabs are investigated in the temperature range of 0-1400 K using first-principles quantum molecular dynamics (QMD) calculations. The temperature-dependent QMD calculations in combination wit...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physical review. B, Condensed matter and materials physics Condensed matter and materials physics, 2012-07, Vol.86 (1), Article 014110
Hauptverfasser: Ivashchenko, V. I., Veprek, S., Turchi, P. E. A., Shevchenko, V. I.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 1
container_start_page
container_title Physical review. B, Condensed matter and materials physics
container_volume 86
creator Ivashchenko, V. I.
Veprek, S.
Turchi, P. E. A.
Shevchenko, V. I.
description Heterostructures with one monolayer of interfacial SiC inserted between several B1(NaCl)-TiN (001) and (111) slabs are investigated in the temperature range of 0-1400 K using first-principles quantum molecular dynamics (QMD) calculations. The temperature-dependent QMD calculations in combination with subsequent variable-cell structural relaxation reveal that the TiN(001)/B1-SiC/TiN(001) interface exists as a pseudomorphic B1-SiC layer at temperatures between 0 and 600 K. After heating to 900-1400 K and subsequent static relaxation, the interfacial layer corresponds to a strongly distorted 3C-SiC-like structure oriented in the (111) direction in which the Si and C atoms are located in the same interfacial plane. The Si atoms form fourfold coordinated Si-C sub(3) N sub(1) configurations, whereas the C atoms are located in C-Si sub(3) Ti sub(2) units. All (111) interfaces calculated at 0, 300, and 1400 K have the same atomic configurations. For these interfaces, the Si and C layers correspond to the Si-C network in the (111) direction of 3C-SiC. The Si and C atoms are located in Si-C sub(3) N sub(1) and C-Si sub(3) Ti sub(3) configurations, respectively. The ideal tensile strength of all the heterostructures is lower than that of TiN. A comparison with the results obtained from earlier "static" ab initio density functional theory calculations at 0 K for similar heterostructures shows the great advantage of QMD calculations that reveal the effects of thermal activation on structural reconstructions.
doi_str_mv 10.1103/PhysRevB.86.014110
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1709745350</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1709745350</sourcerecordid><originalsourceid>FETCH-LOGICAL-c280t-7b22099272a8976df7803f396feeb2ef89a3ed71d81fbc6b38dfa89da6c0e2843</originalsourceid><addsrcrecordid>eNo1kE1LAzEQhoMoWKt_wNMevWybj_1Ijlr8gqKiFbyFbDKhke3umtkV-u-NVE_vMO_DwDyEXDK6YIyK5ct2j6_wfbOQ1YKyIu2OyIyVJc25KD-O00yVzCnj7JScIX7SBKmCz8j6LkQc8yGGzoahBcxwnNw-6322CU_Lt7BapsxCN0L0xqY-dBlOA8StiS7rTNfbfjf0GEbAc3LiTYtw8Zdz8n53u1k95Ovn-8fV9Tq3XNIxrxvOqVK85kaqunK-llR4oSoP0HDwUhkBrmZOMt_YqhHS-UQ6U1kKXBZiTq4Od4fYf02Ao94FtNC2poN-Qs1qquqiFCVNKD-gNvaIEbxOr-5M3GtG9a86_a9Oy0of1Ikf8bFkdA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1709745350</pqid></control><display><type>article</type><title>First-principles study of TiN/SiC/TiN interfaces in superhard nanocomposites</title><source>American Physical Society Journals</source><creator>Ivashchenko, V. I. ; Veprek, S. ; Turchi, P. E. A. ; Shevchenko, V. I.</creator><creatorcontrib>Ivashchenko, V. I. ; Veprek, S. ; Turchi, P. E. A. ; Shevchenko, V. I.</creatorcontrib><description>Heterostructures with one monolayer of interfacial SiC inserted between several B1(NaCl)-TiN (001) and (111) slabs are investigated in the temperature range of 0-1400 K using first-principles quantum molecular dynamics (QMD) calculations. The temperature-dependent QMD calculations in combination with subsequent variable-cell structural relaxation reveal that the TiN(001)/B1-SiC/TiN(001) interface exists as a pseudomorphic B1-SiC layer at temperatures between 0 and 600 K. After heating to 900-1400 K and subsequent static relaxation, the interfacial layer corresponds to a strongly distorted 3C-SiC-like structure oriented in the (111) direction in which the Si and C atoms are located in the same interfacial plane. The Si atoms form fourfold coordinated Si-C sub(3) N sub(1) configurations, whereas the C atoms are located in C-Si sub(3) Ti sub(2) units. All (111) interfaces calculated at 0, 300, and 1400 K have the same atomic configurations. For these interfaces, the Si and C layers correspond to the Si-C network in the (111) direction of 3C-SiC. The Si and C atoms are located in Si-C sub(3) N sub(1) and C-Si sub(3) Ti sub(3) configurations, respectively. The ideal tensile strength of all the heterostructures is lower than that of TiN. A comparison with the results obtained from earlier "static" ab initio density functional theory calculations at 0 K for similar heterostructures shows the great advantage of QMD calculations that reveal the effects of thermal activation on structural reconstructions.</description><identifier>ISSN: 1098-0121</identifier><identifier>EISSN: 1550-235X</identifier><identifier>DOI: 10.1103/PhysRevB.86.014110</identifier><language>eng</language><subject>Activation ; Condensed matter ; Heterostructures ; Mathematical analysis ; Reconstruction ; Silicon ; Silicon carbide ; Tin</subject><ispartof>Physical review. B, Condensed matter and materials physics, 2012-07, Vol.86 (1), Article 014110</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c280t-7b22099272a8976df7803f396feeb2ef89a3ed71d81fbc6b38dfa89da6c0e2843</citedby><cites>FETCH-LOGICAL-c280t-7b22099272a8976df7803f396feeb2ef89a3ed71d81fbc6b38dfa89da6c0e2843</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,2876,2877,27924,27925</link.rule.ids></links><search><creatorcontrib>Ivashchenko, V. I.</creatorcontrib><creatorcontrib>Veprek, S.</creatorcontrib><creatorcontrib>Turchi, P. E. A.</creatorcontrib><creatorcontrib>Shevchenko, V. I.</creatorcontrib><title>First-principles study of TiN/SiC/TiN interfaces in superhard nanocomposites</title><title>Physical review. B, Condensed matter and materials physics</title><description>Heterostructures with one monolayer of interfacial SiC inserted between several B1(NaCl)-TiN (001) and (111) slabs are investigated in the temperature range of 0-1400 K using first-principles quantum molecular dynamics (QMD) calculations. The temperature-dependent QMD calculations in combination with subsequent variable-cell structural relaxation reveal that the TiN(001)/B1-SiC/TiN(001) interface exists as a pseudomorphic B1-SiC layer at temperatures between 0 and 600 K. After heating to 900-1400 K and subsequent static relaxation, the interfacial layer corresponds to a strongly distorted 3C-SiC-like structure oriented in the (111) direction in which the Si and C atoms are located in the same interfacial plane. The Si atoms form fourfold coordinated Si-C sub(3) N sub(1) configurations, whereas the C atoms are located in C-Si sub(3) Ti sub(2) units. All (111) interfaces calculated at 0, 300, and 1400 K have the same atomic configurations. For these interfaces, the Si and C layers correspond to the Si-C network in the (111) direction of 3C-SiC. The Si and C atoms are located in Si-C sub(3) N sub(1) and C-Si sub(3) Ti sub(3) configurations, respectively. The ideal tensile strength of all the heterostructures is lower than that of TiN. A comparison with the results obtained from earlier "static" ab initio density functional theory calculations at 0 K for similar heterostructures shows the great advantage of QMD calculations that reveal the effects of thermal activation on structural reconstructions.</description><subject>Activation</subject><subject>Condensed matter</subject><subject>Heterostructures</subject><subject>Mathematical analysis</subject><subject>Reconstruction</subject><subject>Silicon</subject><subject>Silicon carbide</subject><subject>Tin</subject><issn>1098-0121</issn><issn>1550-235X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><recordid>eNo1kE1LAzEQhoMoWKt_wNMevWybj_1Ijlr8gqKiFbyFbDKhke3umtkV-u-NVE_vMO_DwDyEXDK6YIyK5ct2j6_wfbOQ1YKyIu2OyIyVJc25KD-O00yVzCnj7JScIX7SBKmCz8j6LkQc8yGGzoahBcxwnNw-6322CU_Lt7BapsxCN0L0xqY-dBlOA8StiS7rTNfbfjf0GEbAc3LiTYtw8Zdz8n53u1k95Ovn-8fV9Tq3XNIxrxvOqVK85kaqunK-llR4oSoP0HDwUhkBrmZOMt_YqhHS-UQ6U1kKXBZiTq4Od4fYf02Ao94FtNC2poN-Qs1qquqiFCVNKD-gNvaIEbxOr-5M3GtG9a86_a9Oy0of1Ikf8bFkdA</recordid><startdate>20120716</startdate><enddate>20120716</enddate><creator>Ivashchenko, V. I.</creator><creator>Veprek, S.</creator><creator>Turchi, P. E. A.</creator><creator>Shevchenko, V. I.</creator><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>H8D</scope><scope>JG9</scope><scope>L7M</scope></search><sort><creationdate>20120716</creationdate><title>First-principles study of TiN/SiC/TiN interfaces in superhard nanocomposites</title><author>Ivashchenko, V. I. ; Veprek, S. ; Turchi, P. E. A. ; Shevchenko, V. I.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c280t-7b22099272a8976df7803f396feeb2ef89a3ed71d81fbc6b38dfa89da6c0e2843</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Activation</topic><topic>Condensed matter</topic><topic>Heterostructures</topic><topic>Mathematical analysis</topic><topic>Reconstruction</topic><topic>Silicon</topic><topic>Silicon carbide</topic><topic>Tin</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ivashchenko, V. I.</creatorcontrib><creatorcontrib>Veprek, S.</creatorcontrib><creatorcontrib>Turchi, P. E. A.</creatorcontrib><creatorcontrib>Shevchenko, V. I.</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Physical review. B, Condensed matter and materials physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ivashchenko, V. I.</au><au>Veprek, S.</au><au>Turchi, P. E. A.</au><au>Shevchenko, V. I.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>First-principles study of TiN/SiC/TiN interfaces in superhard nanocomposites</atitle><jtitle>Physical review. B, Condensed matter and materials physics</jtitle><date>2012-07-16</date><risdate>2012</risdate><volume>86</volume><issue>1</issue><artnum>014110</artnum><issn>1098-0121</issn><eissn>1550-235X</eissn><abstract>Heterostructures with one monolayer of interfacial SiC inserted between several B1(NaCl)-TiN (001) and (111) slabs are investigated in the temperature range of 0-1400 K using first-principles quantum molecular dynamics (QMD) calculations. The temperature-dependent QMD calculations in combination with subsequent variable-cell structural relaxation reveal that the TiN(001)/B1-SiC/TiN(001) interface exists as a pseudomorphic B1-SiC layer at temperatures between 0 and 600 K. After heating to 900-1400 K and subsequent static relaxation, the interfacial layer corresponds to a strongly distorted 3C-SiC-like structure oriented in the (111) direction in which the Si and C atoms are located in the same interfacial plane. The Si atoms form fourfold coordinated Si-C sub(3) N sub(1) configurations, whereas the C atoms are located in C-Si sub(3) Ti sub(2) units. All (111) interfaces calculated at 0, 300, and 1400 K have the same atomic configurations. For these interfaces, the Si and C layers correspond to the Si-C network in the (111) direction of 3C-SiC. The Si and C atoms are located in Si-C sub(3) N sub(1) and C-Si sub(3) Ti sub(3) configurations, respectively. The ideal tensile strength of all the heterostructures is lower than that of TiN. A comparison with the results obtained from earlier "static" ab initio density functional theory calculations at 0 K for similar heterostructures shows the great advantage of QMD calculations that reveal the effects of thermal activation on structural reconstructions.</abstract><doi>10.1103/PhysRevB.86.014110</doi></addata></record>
fulltext fulltext
identifier ISSN: 1098-0121
ispartof Physical review. B, Condensed matter and materials physics, 2012-07, Vol.86 (1), Article 014110
issn 1098-0121
1550-235X
language eng
recordid cdi_proquest_miscellaneous_1709745350
source American Physical Society Journals
subjects Activation
Condensed matter
Heterostructures
Mathematical analysis
Reconstruction
Silicon
Silicon carbide
Tin
title First-principles study of TiN/SiC/TiN interfaces in superhard nanocomposites
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T22%3A53%3A16IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=First-principles%20study%20of%20TiN/SiC/TiN%20interfaces%20in%20superhard%20nanocomposites&rft.jtitle=Physical%20review.%20B,%20Condensed%20matter%20and%20materials%20physics&rft.au=Ivashchenko,%20V.%20I.&rft.date=2012-07-16&rft.volume=86&rft.issue=1&rft.artnum=014110&rft.issn=1098-0121&rft.eissn=1550-235X&rft_id=info:doi/10.1103/PhysRevB.86.014110&rft_dat=%3Cproquest_cross%3E1709745350%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1709745350&rft_id=info:pmid/&rfr_iscdi=true