Micromachining of copper by femtosecond laser pulses

▸ We have reported new experimental and theoretical results on the femtosecond laser ablation for copper at fluences up to 408J/cm2. ▸ The present model simulations correlate well with the experimental data over a broad range of laser fluences from 0.8 to 400J/cm2. ▸ The good correlation suggests th...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Applied surface science 2013-01, Vol.265, p.302-308
Hauptverfasser: Wang, S.Y., Ren, Y., Cheng, C.W., Chen, J.K., Tzou, D.Y.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 308
container_issue
container_start_page 302
container_title Applied surface science
container_volume 265
creator Wang, S.Y.
Ren, Y.
Cheng, C.W.
Chen, J.K.
Tzou, D.Y.
description ▸ We have reported new experimental and theoretical results on the femtosecond laser ablation for copper at fluences up to 408J/cm2. ▸ The present model simulations correlate well with the experimental data over a broad range of laser fluences from 0.8 to 400J/cm2. ▸ The good correlation suggests that the proposed model is an efficient and accurate tool for predicting ultrafast laser material ablation. Simulation results of femtosecond laser ablation of copper were compared to experimental data. The numerical analysis was performed using a predictive model, including a two temperature model, an optical critical point model with three Lorentzian terms, two phase change models for melting and evaporation under superheating, and a phase explosion criterion for ejection of metastable liquid decomposing into droplets and vapor phase. The experiments were conducted with a 120-fs, 800-nm Ti:sapphire lasers for fluences up to 408J/cm2. The ablation depths were measured, and the ablation rate was estimated. It was shown that the present numerical simulations correlate well with the experimental data over the entire range of the laser fluences investigated except for those below 0.8J/cm2, indicating that the proposed model is an accurate and efficient tool for predicting ultrashort-pulsed laser material ablation.
doi_str_mv 10.1016/j.apsusc.2012.10.200
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1709745219</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0169433212019563</els_id><sourcerecordid>1709745219</sourcerecordid><originalsourceid>FETCH-LOGICAL-c435t-9843af0e00b1b5f317723b1e95efec1f05d005db82775a5e7821909cc57265903</originalsourceid><addsrcrecordid>eNp9kEtLxDAUhYMoOD7-gYtuBDcd82gmyUaQwReMuNF1SNMbzdA2NWmF-fdm6ODSxeVeTr6Tyz0IXRG8JJisbrdLM6Qp2SXFhGYpd3yEFkQKVnIuq2O0yJgqK8boKTpLaYszmF8XqHr1NobO2C_f-_6zCK6wYRggFvWucNCNIYENfVO0JmVxmNoE6QKdOJOHy0M_Rx-PD-_r53Lz9vSyvt-UtmJ8LJWsmHEYMK5JzR0jQlBWE1AcHFjiMG9wrlpSIbjhICQlCitruaArrjA7Rzfzv0MM3xOkUXc-WWhb00OYkiYCK1Hx7MpoNaP5mpQiOD1E35m40wTrfUh6q-eQ9D6kvZpDyrbrwwaTrGldNL316c9LV1IpSWTm7mYO8rk_HqJO1kNvofER7Kib4P9f9AsInH2i</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1709745219</pqid></control><display><type>article</type><title>Micromachining of copper by femtosecond laser pulses</title><source>Access via ScienceDirect (Elsevier)</source><creator>Wang, S.Y. ; Ren, Y. ; Cheng, C.W. ; Chen, J.K. ; Tzou, D.Y.</creator><creatorcontrib>Wang, S.Y. ; Ren, Y. ; Cheng, C.W. ; Chen, J.K. ; Tzou, D.Y.</creatorcontrib><description>▸ We have reported new experimental and theoretical results on the femtosecond laser ablation for copper at fluences up to 408J/cm2. ▸ The present model simulations correlate well with the experimental data over a broad range of laser fluences from 0.8 to 400J/cm2. ▸ The good correlation suggests that the proposed model is an efficient and accurate tool for predicting ultrafast laser material ablation. Simulation results of femtosecond laser ablation of copper were compared to experimental data. The numerical analysis was performed using a predictive model, including a two temperature model, an optical critical point model with three Lorentzian terms, two phase change models for melting and evaporation under superheating, and a phase explosion criterion for ejection of metastable liquid decomposing into droplets and vapor phase. The experiments were conducted with a 120-fs, 800-nm Ti:sapphire lasers for fluences up to 408J/cm2. The ablation depths were measured, and the ablation rate was estimated. It was shown that the present numerical simulations correlate well with the experimental data over the entire range of the laser fluences investigated except for those below 0.8J/cm2, indicating that the proposed model is an accurate and efficient tool for predicting ultrashort-pulsed laser material ablation.</description><identifier>ISSN: 0169-4332</identifier><identifier>EISSN: 1873-5584</identifier><identifier>DOI: 10.1016/j.apsusc.2012.10.200</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>ABLATION ; Biological and medical sciences ; Biological techniques and instrumentation; biomedical engineering ; COMPUTER SIMULATION ; Condensed matter: electronic structure, electrical, magnetic, and optical properties ; Copper ; Droplets ; Electron and ion emission by liquids and solids; impact phenomena ; Exact sciences and technology ; Femtosecond ; Femtosecond laser ; Fundamental and applied biological sciences. Psychology ; General aspects ; Impact phenomena (including electron spectra and sputtering) ; Instrumentation. Materials. Reagents. Research laboratory organization ; Laser-beam impact phenomena ; LASERS ; MACHINE TOOLS ; MACHINING ; Material ablation ; MATHEMATICAL ANALYSIS ; Mathematical models ; MICROMACHINING ; Phase explosion ; Physics ; Superheating ; Two-temperature model</subject><ispartof>Applied surface science, 2013-01, Vol.265, p.302-308</ispartof><rights>2012 Elsevier B.V.</rights><rights>2014 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c435t-9843af0e00b1b5f317723b1e95efec1f05d005db82775a5e7821909cc57265903</citedby><cites>FETCH-LOGICAL-c435t-9843af0e00b1b5f317723b1e95efec1f05d005db82775a5e7821909cc57265903</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.apsusc.2012.10.200$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>315,782,786,3552,27931,27932,46002</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=26899818$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Wang, S.Y.</creatorcontrib><creatorcontrib>Ren, Y.</creatorcontrib><creatorcontrib>Cheng, C.W.</creatorcontrib><creatorcontrib>Chen, J.K.</creatorcontrib><creatorcontrib>Tzou, D.Y.</creatorcontrib><title>Micromachining of copper by femtosecond laser pulses</title><title>Applied surface science</title><description>▸ We have reported new experimental and theoretical results on the femtosecond laser ablation for copper at fluences up to 408J/cm2. ▸ The present model simulations correlate well with the experimental data over a broad range of laser fluences from 0.8 to 400J/cm2. ▸ The good correlation suggests that the proposed model is an efficient and accurate tool for predicting ultrafast laser material ablation. Simulation results of femtosecond laser ablation of copper were compared to experimental data. The numerical analysis was performed using a predictive model, including a two temperature model, an optical critical point model with three Lorentzian terms, two phase change models for melting and evaporation under superheating, and a phase explosion criterion for ejection of metastable liquid decomposing into droplets and vapor phase. The experiments were conducted with a 120-fs, 800-nm Ti:sapphire lasers for fluences up to 408J/cm2. The ablation depths were measured, and the ablation rate was estimated. It was shown that the present numerical simulations correlate well with the experimental data over the entire range of the laser fluences investigated except for those below 0.8J/cm2, indicating that the proposed model is an accurate and efficient tool for predicting ultrashort-pulsed laser material ablation.</description><subject>ABLATION</subject><subject>Biological and medical sciences</subject><subject>Biological techniques and instrumentation; biomedical engineering</subject><subject>COMPUTER SIMULATION</subject><subject>Condensed matter: electronic structure, electrical, magnetic, and optical properties</subject><subject>Copper</subject><subject>Droplets</subject><subject>Electron and ion emission by liquids and solids; impact phenomena</subject><subject>Exact sciences and technology</subject><subject>Femtosecond</subject><subject>Femtosecond laser</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>General aspects</subject><subject>Impact phenomena (including electron spectra and sputtering)</subject><subject>Instrumentation. Materials. Reagents. Research laboratory organization</subject><subject>Laser-beam impact phenomena</subject><subject>LASERS</subject><subject>MACHINE TOOLS</subject><subject>MACHINING</subject><subject>Material ablation</subject><subject>MATHEMATICAL ANALYSIS</subject><subject>Mathematical models</subject><subject>MICROMACHINING</subject><subject>Phase explosion</subject><subject>Physics</subject><subject>Superheating</subject><subject>Two-temperature model</subject><issn>0169-4332</issn><issn>1873-5584</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><recordid>eNp9kEtLxDAUhYMoOD7-gYtuBDcd82gmyUaQwReMuNF1SNMbzdA2NWmF-fdm6ODSxeVeTr6Tyz0IXRG8JJisbrdLM6Qp2SXFhGYpd3yEFkQKVnIuq2O0yJgqK8boKTpLaYszmF8XqHr1NobO2C_f-_6zCK6wYRggFvWucNCNIYENfVO0JmVxmNoE6QKdOJOHy0M_Rx-PD-_r53Lz9vSyvt-UtmJ8LJWsmHEYMK5JzR0jQlBWE1AcHFjiMG9wrlpSIbjhICQlCitruaArrjA7Rzfzv0MM3xOkUXc-WWhb00OYkiYCK1Hx7MpoNaP5mpQiOD1E35m40wTrfUh6q-eQ9D6kvZpDyrbrwwaTrGldNL316c9LV1IpSWTm7mYO8rk_HqJO1kNvofER7Kib4P9f9AsInH2i</recordid><startdate>20130115</startdate><enddate>20130115</enddate><creator>Wang, S.Y.</creator><creator>Ren, Y.</creator><creator>Cheng, C.W.</creator><creator>Chen, J.K.</creator><creator>Tzou, D.Y.</creator><general>Elsevier B.V</general><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>H8G</scope><scope>JG9</scope><scope>L7M</scope></search><sort><creationdate>20130115</creationdate><title>Micromachining of copper by femtosecond laser pulses</title><author>Wang, S.Y. ; Ren, Y. ; Cheng, C.W. ; Chen, J.K. ; Tzou, D.Y.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c435t-9843af0e00b1b5f317723b1e95efec1f05d005db82775a5e7821909cc57265903</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>ABLATION</topic><topic>Biological and medical sciences</topic><topic>Biological techniques and instrumentation; biomedical engineering</topic><topic>COMPUTER SIMULATION</topic><topic>Condensed matter: electronic structure, electrical, magnetic, and optical properties</topic><topic>Copper</topic><topic>Droplets</topic><topic>Electron and ion emission by liquids and solids; impact phenomena</topic><topic>Exact sciences and technology</topic><topic>Femtosecond</topic><topic>Femtosecond laser</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>General aspects</topic><topic>Impact phenomena (including electron spectra and sputtering)</topic><topic>Instrumentation. Materials. Reagents. Research laboratory organization</topic><topic>Laser-beam impact phenomena</topic><topic>LASERS</topic><topic>MACHINE TOOLS</topic><topic>MACHINING</topic><topic>Material ablation</topic><topic>MATHEMATICAL ANALYSIS</topic><topic>Mathematical models</topic><topic>MICROMACHINING</topic><topic>Phase explosion</topic><topic>Physics</topic><topic>Superheating</topic><topic>Two-temperature model</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, S.Y.</creatorcontrib><creatorcontrib>Ren, Y.</creatorcontrib><creatorcontrib>Cheng, C.W.</creatorcontrib><creatorcontrib>Chen, J.K.</creatorcontrib><creatorcontrib>Tzou, D.Y.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Copper Technical Reference Library</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Applied surface science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wang, S.Y.</au><au>Ren, Y.</au><au>Cheng, C.W.</au><au>Chen, J.K.</au><au>Tzou, D.Y.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Micromachining of copper by femtosecond laser pulses</atitle><jtitle>Applied surface science</jtitle><date>2013-01-15</date><risdate>2013</risdate><volume>265</volume><spage>302</spage><epage>308</epage><pages>302-308</pages><issn>0169-4332</issn><eissn>1873-5584</eissn><abstract>▸ We have reported new experimental and theoretical results on the femtosecond laser ablation for copper at fluences up to 408J/cm2. ▸ The present model simulations correlate well with the experimental data over a broad range of laser fluences from 0.8 to 400J/cm2. ▸ The good correlation suggests that the proposed model is an efficient and accurate tool for predicting ultrafast laser material ablation. Simulation results of femtosecond laser ablation of copper were compared to experimental data. The numerical analysis was performed using a predictive model, including a two temperature model, an optical critical point model with three Lorentzian terms, two phase change models for melting and evaporation under superheating, and a phase explosion criterion for ejection of metastable liquid decomposing into droplets and vapor phase. The experiments were conducted with a 120-fs, 800-nm Ti:sapphire lasers for fluences up to 408J/cm2. The ablation depths were measured, and the ablation rate was estimated. It was shown that the present numerical simulations correlate well with the experimental data over the entire range of the laser fluences investigated except for those below 0.8J/cm2, indicating that the proposed model is an accurate and efficient tool for predicting ultrashort-pulsed laser material ablation.</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><doi>10.1016/j.apsusc.2012.10.200</doi><tpages>7</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0169-4332
ispartof Applied surface science, 2013-01, Vol.265, p.302-308
issn 0169-4332
1873-5584
language eng
recordid cdi_proquest_miscellaneous_1709745219
source Access via ScienceDirect (Elsevier)
subjects ABLATION
Biological and medical sciences
Biological techniques and instrumentation
biomedical engineering
COMPUTER SIMULATION
Condensed matter: electronic structure, electrical, magnetic, and optical properties
Copper
Droplets
Electron and ion emission by liquids and solids
impact phenomena
Exact sciences and technology
Femtosecond
Femtosecond laser
Fundamental and applied biological sciences. Psychology
General aspects
Impact phenomena (including electron spectra and sputtering)
Instrumentation. Materials. Reagents. Research laboratory organization
Laser-beam impact phenomena
LASERS
MACHINE TOOLS
MACHINING
Material ablation
MATHEMATICAL ANALYSIS
Mathematical models
MICROMACHINING
Phase explosion
Physics
Superheating
Two-temperature model
title Micromachining of copper by femtosecond laser pulses
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-04T02%3A07%3A12IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Micromachining%20of%20copper%20by%20femtosecond%20laser%20pulses&rft.jtitle=Applied%20surface%20science&rft.au=Wang,%20S.Y.&rft.date=2013-01-15&rft.volume=265&rft.spage=302&rft.epage=308&rft.pages=302-308&rft.issn=0169-4332&rft.eissn=1873-5584&rft_id=info:doi/10.1016/j.apsusc.2012.10.200&rft_dat=%3Cproquest_cross%3E1709745219%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1709745219&rft_id=info:pmid/&rft_els_id=S0169433212019563&rfr_iscdi=true