Excitonic effects on coherent phonon dynamics in single-wall carbon nanotubes

We discuss how excitons can affect the generation of coherent radial breathing modes in the ultrafast spectroscopy of single-wall carbon nanotubes. Photoexcited excitons can be localized spatially and give rise to a spatially distributed driving force in real space which involves many phonon wave ve...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physical review. B, Condensed matter and materials physics Condensed matter and materials physics, 2013-08, Vol.88 (7), Article 075440
Hauptverfasser: Nugraha, A. R. T., Rosenthal, E. I., Hasdeo, E. H., Sanders, G. D., Stanton, C. J., Dresselhaus, M. S., Saito, R.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 7
container_start_page
container_title Physical review. B, Condensed matter and materials physics
container_volume 88
creator Nugraha, A. R. T.
Rosenthal, E. I.
Hasdeo, E. H.
Sanders, G. D.
Stanton, C. J.
Dresselhaus, M. S.
Saito, R.
description We discuss how excitons can affect the generation of coherent radial breathing modes in the ultrafast spectroscopy of single-wall carbon nanotubes. Photoexcited excitons can be localized spatially and give rise to a spatially distributed driving force in real space which involves many phonon wave vectors of the exciton-phonon interaction. The equation of motion for the coherent phonons is modeled phenomenologically by the Klein-Gordon equation, which we solve for the oscillation amplitudes as a function of space and time. By averaging the calculated amplitudes per nanotube length, we obtain time-dependent coherent phonon amplitudes that resemble the homogeneous oscillations that are observed in some pump-probe experiments. We interpret this result to mean that the experiments are only able to see a spatial average of coherent phonon oscillations over the wavelength of light in carbon nanotubes and the microscopic details are averaged out. Our interpretation is justified by calculating the time-dependent absorption spectra resulting from the macroscopic atomic displacements induced by the coherent phonon oscillations. The calculated coherent phonon spectra including excitonic effects show the experimentally observed symmetric peaks at the nanotube transition energies, in contrast to the asymmetric peaks that would be obtained if excitonic effects were not included.
doi_str_mv 10.1103/PhysRevB.88.075440
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1709744511</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1709744511</sourcerecordid><originalsourceid>FETCH-LOGICAL-c390t-8a3f0a3114592872e86897f17baa9b71600d90e1459f60f9c7fb35567f9d95e23</originalsourceid><addsrcrecordid>eNo1kM1OwzAQhC0EEqXwApxy5JKyG8exfYSq_EhFIAQSN8tx1zQotUucAn17UhVOM6MZzeFj7Bxhggj88mm5Tc_0dT1RagJSlCUcsBEKAXnBxdvh4EGrHLDAY3aS0gcAlrosRuxh9uOaPobGZeQ9uT5lMWQuLqmj0GfrZQxDXmyDXTUuZU3IUhPeW8q_bdtmznb1UAcbYr-pKZ2yI2_bRGd_OmavN7OX6V0-f7y9n17Nc8c19Lmy3IPliKXQhZIFqUpp6VHW1upaYgWw0EC72lfgtZO-5kJU0uuFFlTwMbvY_667-Lmh1JtVkxy1rQ0UN8mgBC3LUiAO02I_dV1MqSNv1l2zst3WIJgdO_PPzihl9uz4LzhSY_U</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1709744511</pqid></control><display><type>article</type><title>Excitonic effects on coherent phonon dynamics in single-wall carbon nanotubes</title><source>American Physical Society Journals</source><creator>Nugraha, A. R. T. ; Rosenthal, E. I. ; Hasdeo, E. H. ; Sanders, G. D. ; Stanton, C. J. ; Dresselhaus, M. S. ; Saito, R.</creator><creatorcontrib>Nugraha, A. R. T. ; Rosenthal, E. I. ; Hasdeo, E. H. ; Sanders, G. D. ; Stanton, C. J. ; Dresselhaus, M. S. ; Saito, R.</creatorcontrib><description>We discuss how excitons can affect the generation of coherent radial breathing modes in the ultrafast spectroscopy of single-wall carbon nanotubes. Photoexcited excitons can be localized spatially and give rise to a spatially distributed driving force in real space which involves many phonon wave vectors of the exciton-phonon interaction. The equation of motion for the coherent phonons is modeled phenomenologically by the Klein-Gordon equation, which we solve for the oscillation amplitudes as a function of space and time. By averaging the calculated amplitudes per nanotube length, we obtain time-dependent coherent phonon amplitudes that resemble the homogeneous oscillations that are observed in some pump-probe experiments. We interpret this result to mean that the experiments are only able to see a spatial average of coherent phonon oscillations over the wavelength of light in carbon nanotubes and the microscopic details are averaged out. Our interpretation is justified by calculating the time-dependent absorption spectra resulting from the macroscopic atomic displacements induced by the coherent phonon oscillations. The calculated coherent phonon spectra including excitonic effects show the experimentally observed symmetric peaks at the nanotube transition energies, in contrast to the asymmetric peaks that would be obtained if excitonic effects were not included.</description><identifier>ISSN: 1098-0121</identifier><identifier>EISSN: 1550-235X</identifier><identifier>DOI: 10.1103/PhysRevB.88.075440</identifier><language>eng</language><subject>Amplitudes ; Coherence ; Excitation spectra ; Excitons ; Mathematical models ; Nanostructure ; Oscillations ; Phonons</subject><ispartof>Physical review. B, Condensed matter and materials physics, 2013-08, Vol.88 (7), Article 075440</ispartof><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c390t-8a3f0a3114592872e86897f17baa9b71600d90e1459f60f9c7fb35567f9d95e23</citedby><cites>FETCH-LOGICAL-c390t-8a3f0a3114592872e86897f17baa9b71600d90e1459f60f9c7fb35567f9d95e23</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,2876,2877,27924,27925</link.rule.ids></links><search><creatorcontrib>Nugraha, A. R. T.</creatorcontrib><creatorcontrib>Rosenthal, E. I.</creatorcontrib><creatorcontrib>Hasdeo, E. H.</creatorcontrib><creatorcontrib>Sanders, G. D.</creatorcontrib><creatorcontrib>Stanton, C. J.</creatorcontrib><creatorcontrib>Dresselhaus, M. S.</creatorcontrib><creatorcontrib>Saito, R.</creatorcontrib><title>Excitonic effects on coherent phonon dynamics in single-wall carbon nanotubes</title><title>Physical review. B, Condensed matter and materials physics</title><description>We discuss how excitons can affect the generation of coherent radial breathing modes in the ultrafast spectroscopy of single-wall carbon nanotubes. Photoexcited excitons can be localized spatially and give rise to a spatially distributed driving force in real space which involves many phonon wave vectors of the exciton-phonon interaction. The equation of motion for the coherent phonons is modeled phenomenologically by the Klein-Gordon equation, which we solve for the oscillation amplitudes as a function of space and time. By averaging the calculated amplitudes per nanotube length, we obtain time-dependent coherent phonon amplitudes that resemble the homogeneous oscillations that are observed in some pump-probe experiments. We interpret this result to mean that the experiments are only able to see a spatial average of coherent phonon oscillations over the wavelength of light in carbon nanotubes and the microscopic details are averaged out. Our interpretation is justified by calculating the time-dependent absorption spectra resulting from the macroscopic atomic displacements induced by the coherent phonon oscillations. The calculated coherent phonon spectra including excitonic effects show the experimentally observed symmetric peaks at the nanotube transition energies, in contrast to the asymmetric peaks that would be obtained if excitonic effects were not included.</description><subject>Amplitudes</subject><subject>Coherence</subject><subject>Excitation spectra</subject><subject>Excitons</subject><subject>Mathematical models</subject><subject>Nanostructure</subject><subject>Oscillations</subject><subject>Phonons</subject><issn>1098-0121</issn><issn>1550-235X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><recordid>eNo1kM1OwzAQhC0EEqXwApxy5JKyG8exfYSq_EhFIAQSN8tx1zQotUucAn17UhVOM6MZzeFj7Bxhggj88mm5Tc_0dT1RagJSlCUcsBEKAXnBxdvh4EGrHLDAY3aS0gcAlrosRuxh9uOaPobGZeQ9uT5lMWQuLqmj0GfrZQxDXmyDXTUuZU3IUhPeW8q_bdtmznb1UAcbYr-pKZ2yI2_bRGd_OmavN7OX6V0-f7y9n17Nc8c19Lmy3IPliKXQhZIFqUpp6VHW1upaYgWw0EC72lfgtZO-5kJU0uuFFlTwMbvY_667-Lmh1JtVkxy1rQ0UN8mgBC3LUiAO02I_dV1MqSNv1l2zst3WIJgdO_PPzihl9uz4LzhSY_U</recordid><startdate>20130830</startdate><enddate>20130830</enddate><creator>Nugraha, A. R. T.</creator><creator>Rosenthal, E. I.</creator><creator>Hasdeo, E. H.</creator><creator>Sanders, G. D.</creator><creator>Stanton, C. J.</creator><creator>Dresselhaus, M. S.</creator><creator>Saito, R.</creator><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>H8D</scope><scope>JG9</scope><scope>L7M</scope></search><sort><creationdate>20130830</creationdate><title>Excitonic effects on coherent phonon dynamics in single-wall carbon nanotubes</title><author>Nugraha, A. R. T. ; Rosenthal, E. I. ; Hasdeo, E. H. ; Sanders, G. D. ; Stanton, C. J. ; Dresselhaus, M. S. ; Saito, R.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c390t-8a3f0a3114592872e86897f17baa9b71600d90e1459f60f9c7fb35567f9d95e23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Amplitudes</topic><topic>Coherence</topic><topic>Excitation spectra</topic><topic>Excitons</topic><topic>Mathematical models</topic><topic>Nanostructure</topic><topic>Oscillations</topic><topic>Phonons</topic><toplevel>online_resources</toplevel><creatorcontrib>Nugraha, A. R. T.</creatorcontrib><creatorcontrib>Rosenthal, E. I.</creatorcontrib><creatorcontrib>Hasdeo, E. H.</creatorcontrib><creatorcontrib>Sanders, G. D.</creatorcontrib><creatorcontrib>Stanton, C. J.</creatorcontrib><creatorcontrib>Dresselhaus, M. S.</creatorcontrib><creatorcontrib>Saito, R.</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Physical review. B, Condensed matter and materials physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Nugraha, A. R. T.</au><au>Rosenthal, E. I.</au><au>Hasdeo, E. H.</au><au>Sanders, G. D.</au><au>Stanton, C. J.</au><au>Dresselhaus, M. S.</au><au>Saito, R.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Excitonic effects on coherent phonon dynamics in single-wall carbon nanotubes</atitle><jtitle>Physical review. B, Condensed matter and materials physics</jtitle><date>2013-08-30</date><risdate>2013</risdate><volume>88</volume><issue>7</issue><artnum>075440</artnum><issn>1098-0121</issn><eissn>1550-235X</eissn><abstract>We discuss how excitons can affect the generation of coherent radial breathing modes in the ultrafast spectroscopy of single-wall carbon nanotubes. Photoexcited excitons can be localized spatially and give rise to a spatially distributed driving force in real space which involves many phonon wave vectors of the exciton-phonon interaction. The equation of motion for the coherent phonons is modeled phenomenologically by the Klein-Gordon equation, which we solve for the oscillation amplitudes as a function of space and time. By averaging the calculated amplitudes per nanotube length, we obtain time-dependent coherent phonon amplitudes that resemble the homogeneous oscillations that are observed in some pump-probe experiments. We interpret this result to mean that the experiments are only able to see a spatial average of coherent phonon oscillations over the wavelength of light in carbon nanotubes and the microscopic details are averaged out. Our interpretation is justified by calculating the time-dependent absorption spectra resulting from the macroscopic atomic displacements induced by the coherent phonon oscillations. The calculated coherent phonon spectra including excitonic effects show the experimentally observed symmetric peaks at the nanotube transition energies, in contrast to the asymmetric peaks that would be obtained if excitonic effects were not included.</abstract><doi>10.1103/PhysRevB.88.075440</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1098-0121
ispartof Physical review. B, Condensed matter and materials physics, 2013-08, Vol.88 (7), Article 075440
issn 1098-0121
1550-235X
language eng
recordid cdi_proquest_miscellaneous_1709744511
source American Physical Society Journals
subjects Amplitudes
Coherence
Excitation spectra
Excitons
Mathematical models
Nanostructure
Oscillations
Phonons
title Excitonic effects on coherent phonon dynamics in single-wall carbon nanotubes
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T22%3A22%3A58IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Excitonic%20effects%20on%20coherent%20phonon%20dynamics%20in%20single-wall%20carbon%20nanotubes&rft.jtitle=Physical%20review.%20B,%20Condensed%20matter%20and%20materials%20physics&rft.au=Nugraha,%20A.%20R.%20T.&rft.date=2013-08-30&rft.volume=88&rft.issue=7&rft.artnum=075440&rft.issn=1098-0121&rft.eissn=1550-235X&rft_id=info:doi/10.1103/PhysRevB.88.075440&rft_dat=%3Cproquest_cross%3E1709744511%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1709744511&rft_id=info:pmid/&rfr_iscdi=true