Time-dependent density functional theory on a lattice
Time-dependent density functional theory (TDDFT) for quantum many-body systems on a lattice is formulated rigorously. We prove the uniqueness of the density-to-potential mapping and demonstrate that a given density is [upsilon] representable if the initial many-body state and the density satisfy cer...
Gespeichert in:
Veröffentlicht in: | Physical review. B, Condensed matter and materials physics Condensed matter and materials physics, 2012-09, Vol.86 (12), Article 125130 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 12 |
container_start_page | |
container_title | Physical review. B, Condensed matter and materials physics |
container_volume | 86 |
creator | Farzanehpour, M. Tokatly, I. V. |
description | Time-dependent density functional theory (TDDFT) for quantum many-body systems on a lattice is formulated rigorously. We prove the uniqueness of the density-to-potential mapping and demonstrate that a given density is [upsilon] representable if the initial many-body state and the density satisfy certain well-defined conditions. In particular, we show that for a system evolving from its ground state any density with a continuous second time derivative is locally in time [upsilon] representable and therefore the lattice TDDFT is guaranteed to exist. The TDDFT existence and uniqueness theorem is valid for any connected lattice, independently of its size, geometry, and/or spatial dimensionality. General statements of the existence theorem are illustrated on a pedagogical exactly solvable example, which displays all the details and subtleties of the proof in a transparent form. In conclusion we briefly discuss remaining open problems and directions for future research. |
doi_str_mv | 10.1103/PhysRevB.86.125130 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1709740981</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1709740981</sourcerecordid><originalsourceid>FETCH-LOGICAL-c329t-76d85f489fbad62f0e8767b823043c323f3569bed289e06cd75f168e55b992713</originalsourceid><addsrcrecordid>eNo1kEtLw0AUhQdRsFb_gKss3aTeO5N5LbX4goIiFdwNk-QOjaRJzUyF_HtTqpt77uLjwPkYu0ZYIIK4fduM8Z1-7hdGLZBLFHDCZigl5FzIz9PpB2tyQI7n7CLGLwAsbMFnTK6bLeU17airqUvZdGKTxizsuyo1fefbLG2oH8as7zKftT6lpqJLdhZ8G-nqL-fs4_FhvXzOV69PL8u7VV4JblOuVW1kKIwNpa8VD0BGK10aLqAQEyKCkMqWVHNjCVRVaxlQGZKytJZrFHN2c-zdDf33nmJy2yZW1La-o34fHWqwupimHVB-RKuhj3Gg4HZDs_XD6BDcwZH7d-SMckdH4heYglry</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1709740981</pqid></control><display><type>article</type><title>Time-dependent density functional theory on a lattice</title><source>American Physical Society Journals</source><creator>Farzanehpour, M. ; Tokatly, I. V.</creator><creatorcontrib>Farzanehpour, M. ; Tokatly, I. V.</creatorcontrib><description>Time-dependent density functional theory (TDDFT) for quantum many-body systems on a lattice is formulated rigorously. We prove the uniqueness of the density-to-potential mapping and demonstrate that a given density is [upsilon] representable if the initial many-body state and the density satisfy certain well-defined conditions. In particular, we show that for a system evolving from its ground state any density with a continuous second time derivative is locally in time [upsilon] representable and therefore the lattice TDDFT is guaranteed to exist. The TDDFT existence and uniqueness theorem is valid for any connected lattice, independently of its size, geometry, and/or spatial dimensionality. General statements of the existence theorem are illustrated on a pedagogical exactly solvable example, which displays all the details and subtleties of the proof in a transparent form. In conclusion we briefly discuss remaining open problems and directions for future research.</description><identifier>ISSN: 1098-0121</identifier><identifier>EISSN: 1550-235X</identifier><identifier>DOI: 10.1103/PhysRevB.86.125130</identifier><language>eng</language><subject>Condensed matter ; Density ; Density functional theory ; Derivatives ; Displays ; Existence theorems ; Lattices ; Uniqueness theorems</subject><ispartof>Physical review. B, Condensed matter and materials physics, 2012-09, Vol.86 (12), Article 125130</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c329t-76d85f489fbad62f0e8767b823043c323f3569bed289e06cd75f168e55b992713</citedby><cites>FETCH-LOGICAL-c329t-76d85f489fbad62f0e8767b823043c323f3569bed289e06cd75f168e55b992713</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,2876,2877,27924,27925</link.rule.ids></links><search><creatorcontrib>Farzanehpour, M.</creatorcontrib><creatorcontrib>Tokatly, I. V.</creatorcontrib><title>Time-dependent density functional theory on a lattice</title><title>Physical review. B, Condensed matter and materials physics</title><description>Time-dependent density functional theory (TDDFT) for quantum many-body systems on a lattice is formulated rigorously. We prove the uniqueness of the density-to-potential mapping and demonstrate that a given density is [upsilon] representable if the initial many-body state and the density satisfy certain well-defined conditions. In particular, we show that for a system evolving from its ground state any density with a continuous second time derivative is locally in time [upsilon] representable and therefore the lattice TDDFT is guaranteed to exist. The TDDFT existence and uniqueness theorem is valid for any connected lattice, independently of its size, geometry, and/or spatial dimensionality. General statements of the existence theorem are illustrated on a pedagogical exactly solvable example, which displays all the details and subtleties of the proof in a transparent form. In conclusion we briefly discuss remaining open problems and directions for future research.</description><subject>Condensed matter</subject><subject>Density</subject><subject>Density functional theory</subject><subject>Derivatives</subject><subject>Displays</subject><subject>Existence theorems</subject><subject>Lattices</subject><subject>Uniqueness theorems</subject><issn>1098-0121</issn><issn>1550-235X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><recordid>eNo1kEtLw0AUhQdRsFb_gKss3aTeO5N5LbX4goIiFdwNk-QOjaRJzUyF_HtTqpt77uLjwPkYu0ZYIIK4fduM8Z1-7hdGLZBLFHDCZigl5FzIz9PpB2tyQI7n7CLGLwAsbMFnTK6bLeU17airqUvZdGKTxizsuyo1fefbLG2oH8as7zKftT6lpqJLdhZ8G-nqL-fs4_FhvXzOV69PL8u7VV4JblOuVW1kKIwNpa8VD0BGK10aLqAQEyKCkMqWVHNjCVRVaxlQGZKytJZrFHN2c-zdDf33nmJy2yZW1La-o34fHWqwupimHVB-RKuhj3Gg4HZDs_XD6BDcwZH7d-SMckdH4heYglry</recordid><startdate>20120921</startdate><enddate>20120921</enddate><creator>Farzanehpour, M.</creator><creator>Tokatly, I. V.</creator><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>H8D</scope><scope>JG9</scope><scope>L7M</scope></search><sort><creationdate>20120921</creationdate><title>Time-dependent density functional theory on a lattice</title><author>Farzanehpour, M. ; Tokatly, I. V.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c329t-76d85f489fbad62f0e8767b823043c323f3569bed289e06cd75f168e55b992713</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Condensed matter</topic><topic>Density</topic><topic>Density functional theory</topic><topic>Derivatives</topic><topic>Displays</topic><topic>Existence theorems</topic><topic>Lattices</topic><topic>Uniqueness theorems</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Farzanehpour, M.</creatorcontrib><creatorcontrib>Tokatly, I. V.</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Physical review. B, Condensed matter and materials physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Farzanehpour, M.</au><au>Tokatly, I. V.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Time-dependent density functional theory on a lattice</atitle><jtitle>Physical review. B, Condensed matter and materials physics</jtitle><date>2012-09-21</date><risdate>2012</risdate><volume>86</volume><issue>12</issue><artnum>125130</artnum><issn>1098-0121</issn><eissn>1550-235X</eissn><abstract>Time-dependent density functional theory (TDDFT) for quantum many-body systems on a lattice is formulated rigorously. We prove the uniqueness of the density-to-potential mapping and demonstrate that a given density is [upsilon] representable if the initial many-body state and the density satisfy certain well-defined conditions. In particular, we show that for a system evolving from its ground state any density with a continuous second time derivative is locally in time [upsilon] representable and therefore the lattice TDDFT is guaranteed to exist. The TDDFT existence and uniqueness theorem is valid for any connected lattice, independently of its size, geometry, and/or spatial dimensionality. General statements of the existence theorem are illustrated on a pedagogical exactly solvable example, which displays all the details and subtleties of the proof in a transparent form. In conclusion we briefly discuss remaining open problems and directions for future research.</abstract><doi>10.1103/PhysRevB.86.125130</doi></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1098-0121 |
ispartof | Physical review. B, Condensed matter and materials physics, 2012-09, Vol.86 (12), Article 125130 |
issn | 1098-0121 1550-235X |
language | eng |
recordid | cdi_proquest_miscellaneous_1709740981 |
source | American Physical Society Journals |
subjects | Condensed matter Density Density functional theory Derivatives Displays Existence theorems Lattices Uniqueness theorems |
title | Time-dependent density functional theory on a lattice |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-23T18%3A42%3A18IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Time-dependent%20density%20functional%20theory%20on%20a%20lattice&rft.jtitle=Physical%20review.%20B,%20Condensed%20matter%20and%20materials%20physics&rft.au=Farzanehpour,%20M.&rft.date=2012-09-21&rft.volume=86&rft.issue=12&rft.artnum=125130&rft.issn=1098-0121&rft.eissn=1550-235X&rft_id=info:doi/10.1103/PhysRevB.86.125130&rft_dat=%3Cproquest_cross%3E1709740981%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1709740981&rft_id=info:pmid/&rfr_iscdi=true |