Breakup of Oil Jets into Droplets in Seawater with Environmentally Benign Nanoparticle and Surfactant Dispersants
During deep-sea oil leaks, dispersants may be used to break up the oil into droplets smaller than about 70 μm, which may then be bioremediated by bacteria before they reach the ocean surface. To investigate the mechanism of droplet formation as a function of dispersant type, concentration, and jet v...
Gespeichert in:
Veröffentlicht in: | I&EC Research 2015-04, Vol.54 (16), p.4243-4251 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 4251 |
---|---|
container_issue | 16 |
container_start_page | 4243 |
container_title | I&EC Research |
container_volume | 54 |
creator | Yu, Guangzhe Dong, Jiannan Foster, Lynn M Metaxas, Athena E Truskett, Thomas M Johnston, Keith P |
description | During deep-sea oil leaks, dispersants may be used to break up the oil into droplets smaller than about 70 μm, which may then be bioremediated by bacteria before they reach the ocean surface. To investigate the mechanism of droplet formation as a function of dispersant type, concentration, and jet velocity, a flowing oleophilic stream containing amphiphiles was mixed with flowing dodecane and then atomized through a 0.25 mm circular nozzle. The minimum droplet diameters were 2.2, 4.5, and 24 μm for only 5 w:v % amphiphile in the oil phase for Corexit 9500A, Tergitol 15-S-7 (C12H25CH(OCH2CH2)7OH), and a silica nanoparticle/Span 20 mixture, respectively. For Tergitol 15-S-7, the droplet size exhibited the expected scaling with Weber number (We) at low viscosity numbers (Vi < 50), where inertial forces overcome interfacial forces, and Reynolds number (Re) at high Vi numbers (Vi > 50), where inertial forces overcome viscous forces. However, in the case of the silica nanoparticle/Span 20 mixture, the magnitude of the exponent of We scaling was found to be smaller than −3/5. A better understanding of how low concentrations of dispersants (with relatively high oil–water interfacial tensions) may be used to provide a sufficient We with high inertial forces (high Re) in jets to form small oil droplets, which is of interest for advancing environmental protection in the undesired event of a deep-sea oil leak. |
doi_str_mv | 10.1021/ie503658h |
format | Article |
fullrecord | <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_proquest_miscellaneous_1709738396</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1709738396</sourcerecordid><originalsourceid>FETCH-LOGICAL-a389t-a514180fdc1e7758b1f26cd6b9be9ec0b9a0cb819019805c810b4b4507a320a33</originalsourceid><addsrcrecordid>eNqN0U1P3DAQBmCrKhJb4MA_sJAqtYeUcRJv7CMfS1u0ggNwtibeSdc0awfbKeLfExTUUw89zYz06D3My9ixgG8CSnHqSEK1lGr7gS2ELKGQUMuPbAFKqUIqJffZp5QeAUDKul6wp_NI-HsceOj4rev5NeXEnc-BX8Yw9PPF7wifMVPkzy5v-cr_cTH4HfmMff_Cz8m7X57foA8DxuxsTxz9ht-NsUOb0Wd-6dJAMU1rOmR7HfaJjt7nAXu4Wt1f_CjWt99_XpytC6yUzgVKUQsF3cYKahqpWtGVS7tZtrolTRZajWBbJTQIrUBaJaCt21pCg1UJWFUH7GTODSk7k6zLZLc2eE82G1EKkEpP6MuMhhieRkrZ7Fyy1PfoKYzJiAZ0U6lKL_-HSlB11ciJfp2pjSGlSJ0ZotthfDECzFtN5m9Nk_08W7TJPIYx-ukp_3Cval6RCA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1705084375</pqid></control><display><type>article</type><title>Breakup of Oil Jets into Droplets in Seawater with Environmentally Benign Nanoparticle and Surfactant Dispersants</title><source>ACS Publications</source><creator>Yu, Guangzhe ; Dong, Jiannan ; Foster, Lynn M ; Metaxas, Athena E ; Truskett, Thomas M ; Johnston, Keith P</creator><creatorcontrib>Yu, Guangzhe ; Dong, Jiannan ; Foster, Lynn M ; Metaxas, Athena E ; Truskett, Thomas M ; Johnston, Keith P ; Center for Frontiers of Subsurface Energy Security (CFSES) ; Energy Frontier Research Centers (EFRC)</creatorcontrib><description>During deep-sea oil leaks, dispersants may be used to break up the oil into droplets smaller than about 70 μm, which may then be bioremediated by bacteria before they reach the ocean surface. To investigate the mechanism of droplet formation as a function of dispersant type, concentration, and jet velocity, a flowing oleophilic stream containing amphiphiles was mixed with flowing dodecane and then atomized through a 0.25 mm circular nozzle. The minimum droplet diameters were 2.2, 4.5, and 24 μm for only 5 w:v % amphiphile in the oil phase for Corexit 9500A, Tergitol 15-S-7 (C12H25CH(OCH2CH2)7OH), and a silica nanoparticle/Span 20 mixture, respectively. For Tergitol 15-S-7, the droplet size exhibited the expected scaling with Weber number (We) at low viscosity numbers (Vi < 50), where inertial forces overcome interfacial forces, and Reynolds number (Re) at high Vi numbers (Vi > 50), where inertial forces overcome viscous forces. However, in the case of the silica nanoparticle/Span 20 mixture, the magnitude of the exponent of We scaling was found to be smaller than −3/5. A better understanding of how low concentrations of dispersants (with relatively high oil–water interfacial tensions) may be used to provide a sufficient We with high inertial forces (high Re) in jets to form small oil droplets, which is of interest for advancing environmental protection in the undesired event of a deep-sea oil leak.</description><identifier>ISSN: 0888-5885</identifier><identifier>EISSN: 1520-5045</identifier><identifier>DOI: 10.1021/ie503658h</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>Bacteria ; Dispersants ; Droplets ; Inertial ; Jets ; Leaks ; Nanostructure ; nuclear (including radiation effects), carbon sequestration ; Silicon dioxide</subject><ispartof>I&EC Research, 2015-04, Vol.54 (16), p.4243-4251</ispartof><rights>Copyright © 2014 American Chemical Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a389t-a514180fdc1e7758b1f26cd6b9be9ec0b9a0cb819019805c810b4b4507a320a33</citedby><cites>FETCH-LOGICAL-a389t-a514180fdc1e7758b1f26cd6b9be9ec0b9a0cb819019805c810b4b4507a320a33</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/ie503658h$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/ie503658h$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>315,782,786,887,2767,27083,27931,27932,56745,56795</link.rule.ids><backlink>$$Uhttps://www.osti.gov/biblio/1210589$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Yu, Guangzhe</creatorcontrib><creatorcontrib>Dong, Jiannan</creatorcontrib><creatorcontrib>Foster, Lynn M</creatorcontrib><creatorcontrib>Metaxas, Athena E</creatorcontrib><creatorcontrib>Truskett, Thomas M</creatorcontrib><creatorcontrib>Johnston, Keith P</creatorcontrib><creatorcontrib>Center for Frontiers of Subsurface Energy Security (CFSES)</creatorcontrib><creatorcontrib>Energy Frontier Research Centers (EFRC)</creatorcontrib><title>Breakup of Oil Jets into Droplets in Seawater with Environmentally Benign Nanoparticle and Surfactant Dispersants</title><title>I&EC Research</title><addtitle>Ind. Eng. Chem. Res</addtitle><description>During deep-sea oil leaks, dispersants may be used to break up the oil into droplets smaller than about 70 μm, which may then be bioremediated by bacteria before they reach the ocean surface. To investigate the mechanism of droplet formation as a function of dispersant type, concentration, and jet velocity, a flowing oleophilic stream containing amphiphiles was mixed with flowing dodecane and then atomized through a 0.25 mm circular nozzle. The minimum droplet diameters were 2.2, 4.5, and 24 μm for only 5 w:v % amphiphile in the oil phase for Corexit 9500A, Tergitol 15-S-7 (C12H25CH(OCH2CH2)7OH), and a silica nanoparticle/Span 20 mixture, respectively. For Tergitol 15-S-7, the droplet size exhibited the expected scaling with Weber number (We) at low viscosity numbers (Vi < 50), where inertial forces overcome interfacial forces, and Reynolds number (Re) at high Vi numbers (Vi > 50), where inertial forces overcome viscous forces. However, in the case of the silica nanoparticle/Span 20 mixture, the magnitude of the exponent of We scaling was found to be smaller than −3/5. A better understanding of how low concentrations of dispersants (with relatively high oil–water interfacial tensions) may be used to provide a sufficient We with high inertial forces (high Re) in jets to form small oil droplets, which is of interest for advancing environmental protection in the undesired event of a deep-sea oil leak.</description><subject>Bacteria</subject><subject>Dispersants</subject><subject>Droplets</subject><subject>Inertial</subject><subject>Jets</subject><subject>Leaks</subject><subject>Nanostructure</subject><subject>nuclear (including radiation effects), carbon sequestration</subject><subject>Silicon dioxide</subject><issn>0888-5885</issn><issn>1520-5045</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><recordid>eNqN0U1P3DAQBmCrKhJb4MA_sJAqtYeUcRJv7CMfS1u0ggNwtibeSdc0awfbKeLfExTUUw89zYz06D3My9ixgG8CSnHqSEK1lGr7gS2ELKGQUMuPbAFKqUIqJffZp5QeAUDKul6wp_NI-HsceOj4rev5NeXEnc-BX8Yw9PPF7wifMVPkzy5v-cr_cTH4HfmMff_Cz8m7X57foA8DxuxsTxz9ht-NsUOb0Wd-6dJAMU1rOmR7HfaJjt7nAXu4Wt1f_CjWt99_XpytC6yUzgVKUQsF3cYKahqpWtGVS7tZtrolTRZajWBbJTQIrUBaJaCt21pCg1UJWFUH7GTODSk7k6zLZLc2eE82G1EKkEpP6MuMhhieRkrZ7Fyy1PfoKYzJiAZ0U6lKL_-HSlB11ciJfp2pjSGlSJ0ZotthfDECzFtN5m9Nk_08W7TJPIYx-ukp_3Cval6RCA</recordid><startdate>20150429</startdate><enddate>20150429</enddate><creator>Yu, Guangzhe</creator><creator>Dong, Jiannan</creator><creator>Foster, Lynn M</creator><creator>Metaxas, Athena E</creator><creator>Truskett, Thomas M</creator><creator>Johnston, Keith P</creator><general>American Chemical Society</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TV</scope><scope>C1K</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope><scope>OTOTI</scope></search><sort><creationdate>20150429</creationdate><title>Breakup of Oil Jets into Droplets in Seawater with Environmentally Benign Nanoparticle and Surfactant Dispersants</title><author>Yu, Guangzhe ; Dong, Jiannan ; Foster, Lynn M ; Metaxas, Athena E ; Truskett, Thomas M ; Johnston, Keith P</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a389t-a514180fdc1e7758b1f26cd6b9be9ec0b9a0cb819019805c810b4b4507a320a33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Bacteria</topic><topic>Dispersants</topic><topic>Droplets</topic><topic>Inertial</topic><topic>Jets</topic><topic>Leaks</topic><topic>Nanostructure</topic><topic>nuclear (including radiation effects), carbon sequestration</topic><topic>Silicon dioxide</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yu, Guangzhe</creatorcontrib><creatorcontrib>Dong, Jiannan</creatorcontrib><creatorcontrib>Foster, Lynn M</creatorcontrib><creatorcontrib>Metaxas, Athena E</creatorcontrib><creatorcontrib>Truskett, Thomas M</creatorcontrib><creatorcontrib>Johnston, Keith P</creatorcontrib><creatorcontrib>Center for Frontiers of Subsurface Energy Security (CFSES)</creatorcontrib><creatorcontrib>Energy Frontier Research Centers (EFRC)</creatorcontrib><collection>CrossRef</collection><collection>Pollution Abstracts</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>OSTI.GOV</collection><jtitle>I&EC Research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yu, Guangzhe</au><au>Dong, Jiannan</au><au>Foster, Lynn M</au><au>Metaxas, Athena E</au><au>Truskett, Thomas M</au><au>Johnston, Keith P</au><aucorp>Center for Frontiers of Subsurface Energy Security (CFSES)</aucorp><aucorp>Energy Frontier Research Centers (EFRC)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Breakup of Oil Jets into Droplets in Seawater with Environmentally Benign Nanoparticle and Surfactant Dispersants</atitle><jtitle>I&EC Research</jtitle><addtitle>Ind. Eng. Chem. Res</addtitle><date>2015-04-29</date><risdate>2015</risdate><volume>54</volume><issue>16</issue><spage>4243</spage><epage>4251</epage><pages>4243-4251</pages><issn>0888-5885</issn><eissn>1520-5045</eissn><abstract>During deep-sea oil leaks, dispersants may be used to break up the oil into droplets smaller than about 70 μm, which may then be bioremediated by bacteria before they reach the ocean surface. To investigate the mechanism of droplet formation as a function of dispersant type, concentration, and jet velocity, a flowing oleophilic stream containing amphiphiles was mixed with flowing dodecane and then atomized through a 0.25 mm circular nozzle. The minimum droplet diameters were 2.2, 4.5, and 24 μm for only 5 w:v % amphiphile in the oil phase for Corexit 9500A, Tergitol 15-S-7 (C12H25CH(OCH2CH2)7OH), and a silica nanoparticle/Span 20 mixture, respectively. For Tergitol 15-S-7, the droplet size exhibited the expected scaling with Weber number (We) at low viscosity numbers (Vi < 50), where inertial forces overcome interfacial forces, and Reynolds number (Re) at high Vi numbers (Vi > 50), where inertial forces overcome viscous forces. However, in the case of the silica nanoparticle/Span 20 mixture, the magnitude of the exponent of We scaling was found to be smaller than −3/5. A better understanding of how low concentrations of dispersants (with relatively high oil–water interfacial tensions) may be used to provide a sufficient We with high inertial forces (high Re) in jets to form small oil droplets, which is of interest for advancing environmental protection in the undesired event of a deep-sea oil leak.</abstract><cop>United States</cop><pub>American Chemical Society</pub><doi>10.1021/ie503658h</doi><tpages>9</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0888-5885 |
ispartof | I&EC Research, 2015-04, Vol.54 (16), p.4243-4251 |
issn | 0888-5885 1520-5045 |
language | eng |
recordid | cdi_proquest_miscellaneous_1709738396 |
source | ACS Publications |
subjects | Bacteria Dispersants Droplets Inertial Jets Leaks Nanostructure nuclear (including radiation effects), carbon sequestration Silicon dioxide |
title | Breakup of Oil Jets into Droplets in Seawater with Environmentally Benign Nanoparticle and Surfactant Dispersants |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-05T02%3A25%3A49IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Breakup%20of%20Oil%20Jets%20into%20Droplets%20in%20Seawater%20with%20Environmentally%20Benign%20Nanoparticle%20and%20Surfactant%20Dispersants&rft.jtitle=I&EC%20Research&rft.au=Yu,%20Guangzhe&rft.aucorp=Center%20for%20Frontiers%20of%20Subsurface%20Energy%20Security%20(CFSES)&rft.date=2015-04-29&rft.volume=54&rft.issue=16&rft.spage=4243&rft.epage=4251&rft.pages=4243-4251&rft.issn=0888-5885&rft.eissn=1520-5045&rft_id=info:doi/10.1021/ie503658h&rft_dat=%3Cproquest_osti_%3E1709738396%3C/proquest_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1705084375&rft_id=info:pmid/&rfr_iscdi=true |