On the Transverse, Low Frequency Vibrations of a Traveling String With Boundary Damping
In this paper, we study the free transverse vibrations of an axially moving (gyroscopic) material represented by a perfectly flexible string. The problem can be used as a simple model to describe the low frequency oscillations of elastic structures such as conveyor belts. In order to suppress these...
Gespeichert in:
Veröffentlicht in: | Journal of vibration and acoustics 2015-08, Vol.137 (4) |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 4 |
container_start_page | |
container_title | Journal of vibration and acoustics |
container_volume | 137 |
creator | Gaiko, Nick V van Horssen, Wim T |
description | In this paper, we study the free transverse vibrations of an axially moving (gyroscopic) material represented by a perfectly flexible string. The problem can be used as a simple model to describe the low frequency oscillations of elastic structures such as conveyor belts. In order to suppress these oscillations, a spring–mass–dashpot system is attached at the nonfixed end of the string. In this paper, it is assumed that the damping in the dashpot is small and that the axial velocity of the string is small compared to the wave speed of the string. This paper has two main objectives. The first aim is to give explicit approximations of the solution on long timescales by using a multiple-timescales perturbation method. The other goal is to construct accurate approximations of the lower eigenvalues of the problem, which describe the oscillation and the damping properties of the problem. The eigenvalues follow from a so-called characteristic equation obtained by the direct application of the Laplace transform method to the initial-boundary value problem. Both approaches give a complete and accurate picture of the damping and the low frequency oscillatory behavior of the traveling string. |
doi_str_mv | 10.1115/1.4029690 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1709735874</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1709735874</sourcerecordid><originalsourceid>FETCH-LOGICAL-a282t-8ffb5c7196505b712f00746473a6bf11aebc17e885541675f836b17b1fb7980a3</originalsourceid><addsrcrecordid>eNotkDFPwzAUhC0EEqUwMLN4BIkUPzuO7REKBaRKHSh0tOxg01RpXOykqP-eVO10T6dPT3eH0DWQEQDwBxjlhKpCkRM0AE5lJhUVp_1NcpkpQug5ukhpRQgwxvkALWYNbpcOz6Np0tbF5O7xNPzhSXS_nWvKHf6qbDRtFZqEg8dmT25dXTU_-KONe1lU7RI_ha75NnGHn81607uX6MybOrmrow7R5-RlPn7LprPX9_HjNDNU0jaT3lteClAFJ9wKoJ4QkRe5YKawHsA4W4JwUnKeQyG4l6ywICx4K5Qkhg3R7eHvJoY-cGr1ukqlq2vTuNAlDYIowbgUeY_eHdAyhpSi83oTq3WfWQPR-_E06ON4PXtzYE1aO70KXWz6FpopynJg_5m9aNI</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1709735874</pqid></control><display><type>article</type><title>On the Transverse, Low Frequency Vibrations of a Traveling String With Boundary Damping</title><source>Alma/SFX Local Collection</source><source>ASME Transactions Journals (Current)</source><creator>Gaiko, Nick V ; van Horssen, Wim T</creator><creatorcontrib>Gaiko, Nick V ; van Horssen, Wim T</creatorcontrib><description>In this paper, we study the free transverse vibrations of an axially moving (gyroscopic) material represented by a perfectly flexible string. The problem can be used as a simple model to describe the low frequency oscillations of elastic structures such as conveyor belts. In order to suppress these oscillations, a spring–mass–dashpot system is attached at the nonfixed end of the string. In this paper, it is assumed that the damping in the dashpot is small and that the axial velocity of the string is small compared to the wave speed of the string. This paper has two main objectives. The first aim is to give explicit approximations of the solution on long timescales by using a multiple-timescales perturbation method. The other goal is to construct accurate approximations of the lower eigenvalues of the problem, which describe the oscillation and the damping properties of the problem. The eigenvalues follow from a so-called characteristic equation obtained by the direct application of the Laplace transform method to the initial-boundary value problem. Both approaches give a complete and accurate picture of the damping and the low frequency oscillatory behavior of the traveling string.</description><identifier>ISSN: 1048-9002</identifier><identifier>EISSN: 1528-8927</identifier><identifier>DOI: 10.1115/1.4029690</identifier><language>eng</language><publisher>ASME</publisher><subject>Damping ; Eigenvalues ; Low frequencies ; Mathematical analysis ; Mathematical models ; Oscillations ; Strings ; Vibration</subject><ispartof>Journal of vibration and acoustics, 2015-08, Vol.137 (4)</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a282t-8ffb5c7196505b712f00746473a6bf11aebc17e885541675f836b17b1fb7980a3</citedby><cites>FETCH-LOGICAL-a282t-8ffb5c7196505b712f00746473a6bf11aebc17e885541675f836b17b1fb7980a3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902,38497</link.rule.ids></links><search><creatorcontrib>Gaiko, Nick V</creatorcontrib><creatorcontrib>van Horssen, Wim T</creatorcontrib><title>On the Transverse, Low Frequency Vibrations of a Traveling String With Boundary Damping</title><title>Journal of vibration and acoustics</title><addtitle>J. Vib. Acoust</addtitle><description>In this paper, we study the free transverse vibrations of an axially moving (gyroscopic) material represented by a perfectly flexible string. The problem can be used as a simple model to describe the low frequency oscillations of elastic structures such as conveyor belts. In order to suppress these oscillations, a spring–mass–dashpot system is attached at the nonfixed end of the string. In this paper, it is assumed that the damping in the dashpot is small and that the axial velocity of the string is small compared to the wave speed of the string. This paper has two main objectives. The first aim is to give explicit approximations of the solution on long timescales by using a multiple-timescales perturbation method. The other goal is to construct accurate approximations of the lower eigenvalues of the problem, which describe the oscillation and the damping properties of the problem. The eigenvalues follow from a so-called characteristic equation obtained by the direct application of the Laplace transform method to the initial-boundary value problem. Both approaches give a complete and accurate picture of the damping and the low frequency oscillatory behavior of the traveling string.</description><subject>Damping</subject><subject>Eigenvalues</subject><subject>Low frequencies</subject><subject>Mathematical analysis</subject><subject>Mathematical models</subject><subject>Oscillations</subject><subject>Strings</subject><subject>Vibration</subject><issn>1048-9002</issn><issn>1528-8927</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><recordid>eNotkDFPwzAUhC0EEqUwMLN4BIkUPzuO7REKBaRKHSh0tOxg01RpXOykqP-eVO10T6dPT3eH0DWQEQDwBxjlhKpCkRM0AE5lJhUVp_1NcpkpQug5ukhpRQgwxvkALWYNbpcOz6Np0tbF5O7xNPzhSXS_nWvKHf6qbDRtFZqEg8dmT25dXTU_-KONe1lU7RI_ha75NnGHn81607uX6MybOrmrow7R5-RlPn7LprPX9_HjNDNU0jaT3lteClAFJ9wKoJ4QkRe5YKawHsA4W4JwUnKeQyG4l6ywICx4K5Qkhg3R7eHvJoY-cGr1ukqlq2vTuNAlDYIowbgUeY_eHdAyhpSi83oTq3WfWQPR-_E06ON4PXtzYE1aO70KXWz6FpopynJg_5m9aNI</recordid><startdate>20150801</startdate><enddate>20150801</enddate><creator>Gaiko, Nick V</creator><creator>van Horssen, Wim T</creator><general>ASME</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>KR7</scope></search><sort><creationdate>20150801</creationdate><title>On the Transverse, Low Frequency Vibrations of a Traveling String With Boundary Damping</title><author>Gaiko, Nick V ; van Horssen, Wim T</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a282t-8ffb5c7196505b712f00746473a6bf11aebc17e885541675f836b17b1fb7980a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Damping</topic><topic>Eigenvalues</topic><topic>Low frequencies</topic><topic>Mathematical analysis</topic><topic>Mathematical models</topic><topic>Oscillations</topic><topic>Strings</topic><topic>Vibration</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gaiko, Nick V</creatorcontrib><creatorcontrib>van Horssen, Wim T</creatorcontrib><collection>CrossRef</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Civil Engineering Abstracts</collection><jtitle>Journal of vibration and acoustics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gaiko, Nick V</au><au>van Horssen, Wim T</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>On the Transverse, Low Frequency Vibrations of a Traveling String With Boundary Damping</atitle><jtitle>Journal of vibration and acoustics</jtitle><stitle>J. Vib. Acoust</stitle><date>2015-08-01</date><risdate>2015</risdate><volume>137</volume><issue>4</issue><issn>1048-9002</issn><eissn>1528-8927</eissn><abstract>In this paper, we study the free transverse vibrations of an axially moving (gyroscopic) material represented by a perfectly flexible string. The problem can be used as a simple model to describe the low frequency oscillations of elastic structures such as conveyor belts. In order to suppress these oscillations, a spring–mass–dashpot system is attached at the nonfixed end of the string. In this paper, it is assumed that the damping in the dashpot is small and that the axial velocity of the string is small compared to the wave speed of the string. This paper has two main objectives. The first aim is to give explicit approximations of the solution on long timescales by using a multiple-timescales perturbation method. The other goal is to construct accurate approximations of the lower eigenvalues of the problem, which describe the oscillation and the damping properties of the problem. The eigenvalues follow from a so-called characteristic equation obtained by the direct application of the Laplace transform method to the initial-boundary value problem. Both approaches give a complete and accurate picture of the damping and the low frequency oscillatory behavior of the traveling string.</abstract><pub>ASME</pub><doi>10.1115/1.4029690</doi></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1048-9002 |
ispartof | Journal of vibration and acoustics, 2015-08, Vol.137 (4) |
issn | 1048-9002 1528-8927 |
language | eng |
recordid | cdi_proquest_miscellaneous_1709735874 |
source | Alma/SFX Local Collection; ASME Transactions Journals (Current) |
subjects | Damping Eigenvalues Low frequencies Mathematical analysis Mathematical models Oscillations Strings Vibration |
title | On the Transverse, Low Frequency Vibrations of a Traveling String With Boundary Damping |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-13T08%3A06%3A59IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=On%20the%20Transverse,%20Low%20Frequency%20Vibrations%20of%20a%20Traveling%20String%20With%20Boundary%20Damping&rft.jtitle=Journal%20of%20vibration%20and%20acoustics&rft.au=Gaiko,%20Nick%20V&rft.date=2015-08-01&rft.volume=137&rft.issue=4&rft.issn=1048-9002&rft.eissn=1528-8927&rft_id=info:doi/10.1115/1.4029690&rft_dat=%3Cproquest_cross%3E1709735874%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1709735874&rft_id=info:pmid/&rfr_iscdi=true |