Protein-ligand docking using fitness learning-based artificial bee colony with proximity stimuli
Protein-ligand docking is an optimization problem, which aims to identify the binding pose of a ligand with the lowest energy in the active site of a target protein. In this study, we employed a novel optimization algorithm called fitness learning-based artificial bee colony with proximity stimuli (...
Gespeichert in:
Veröffentlicht in: | Physical chemistry chemical physics : PCCP 2015-07, Vol.17 (25), p.16412-16417 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 16417 |
---|---|
container_issue | 25 |
container_start_page | 16412 |
container_title | Physical chemistry chemical physics : PCCP |
container_volume | 17 |
creator | Uehara, Shota Fujimoto, Kazuhiro J Tanaka, Shigenori |
description | Protein-ligand docking is an optimization problem, which aims to identify the binding pose of a ligand with the lowest energy in the active site of a target protein. In this study, we employed a novel optimization algorithm called fitness learning-based artificial bee colony with proximity stimuli (FlABCps) for docking. Simulation results revealed that FlABCps improved the success rate of docking, compared to four state-of-the-art algorithms. The present results also showed superior docking performance of FlABCps, in particular for dealing with highly flexible ligands and proteins with a wide and shallow binding pocket. |
doi_str_mv | 10.1039/c5cp01394a |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1709733866</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1709733866</sourcerecordid><originalsourceid>FETCH-LOGICAL-c361t-2f2b25611e3ccb41feb35434bff39afd0724c7860635365ae8c735d53ee3b463</originalsourceid><addsrcrecordid>eNqNkE1PwzAMhiMEYmNw4QegHBFSIamTtD1OE1_SJHbYvaSpMwL9GE0q2L-nY2NnLrZlPXplP4RccnbLGWR3Rpo145AJfUTGXCiIMpaK48OcqBE58_6dMcYlh1MyihWTLE3SMXlddG1A10SVW-mmpGVrPlyzor3fVutCg97TCnXXDIuo0B5LqrvgrDNOV7RApKat2mZDv1x4o-uu_Xa1Cxvqg6v7yp2TE6srjxf7PiHLh_vl7Cmavzw-z6bzyIDiIYptXMRScY5gTCG4xQKkAFFYC5m2JUtiYZJUMQUSlNSYmgRkKQERiuHNCbnexQ4HfPboQ147b7CqdINt73OesCwBSNU_UJVmqYizgZ-Qmx1qutb7Dm2-7lytu03OWb51n8_kbPHrfjrAV_vcvqixPKB_suEHOWd_1Q</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1689842997</pqid></control><display><type>article</type><title>Protein-ligand docking using fitness learning-based artificial bee colony with proximity stimuli</title><source>MEDLINE</source><source>Royal Society Of Chemistry Journals</source><source>Alma/SFX Local Collection</source><creator>Uehara, Shota ; Fujimoto, Kazuhiro J ; Tanaka, Shigenori</creator><creatorcontrib>Uehara, Shota ; Fujimoto, Kazuhiro J ; Tanaka, Shigenori</creatorcontrib><description>Protein-ligand docking is an optimization problem, which aims to identify the binding pose of a ligand with the lowest energy in the active site of a target protein. In this study, we employed a novel optimization algorithm called fitness learning-based artificial bee colony with proximity stimuli (FlABCps) for docking. Simulation results revealed that FlABCps improved the success rate of docking, compared to four state-of-the-art algorithms. The present results also showed superior docking performance of FlABCps, in particular for dealing with highly flexible ligands and proteins with a wide and shallow binding pocket.</description><identifier>ISSN: 1463-9076</identifier><identifier>EISSN: 1463-9084</identifier><identifier>DOI: 10.1039/c5cp01394a</identifier><identifier>PMID: 26050878</identifier><language>eng</language><publisher>England</publisher><subject>Alanine - analogs & derivatives ; Alanine - chemistry ; Algorithms ; Artificial Intelligence ; Binding Sites ; Biphenyl Compounds - chemistry ; Computer Simulation ; Docking ; Fitness ; Ligands ; Molecular Docking Simulation ; Molecular Structure ; Neprilysin - antagonists & inhibitors ; Neprilysin - chemistry ; Optimization ; Protein Binding ; Proteins ; Proteins - chemistry ; Stimuli ; Swarm intelligence</subject><ispartof>Physical chemistry chemical physics : PCCP, 2015-07, Vol.17 (25), p.16412-16417</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c361t-2f2b25611e3ccb41feb35434bff39afd0724c7860635365ae8c735d53ee3b463</citedby><cites>FETCH-LOGICAL-c361t-2f2b25611e3ccb41feb35434bff39afd0724c7860635365ae8c735d53ee3b463</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/26050878$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Uehara, Shota</creatorcontrib><creatorcontrib>Fujimoto, Kazuhiro J</creatorcontrib><creatorcontrib>Tanaka, Shigenori</creatorcontrib><title>Protein-ligand docking using fitness learning-based artificial bee colony with proximity stimuli</title><title>Physical chemistry chemical physics : PCCP</title><addtitle>Phys Chem Chem Phys</addtitle><description>Protein-ligand docking is an optimization problem, which aims to identify the binding pose of a ligand with the lowest energy in the active site of a target protein. In this study, we employed a novel optimization algorithm called fitness learning-based artificial bee colony with proximity stimuli (FlABCps) for docking. Simulation results revealed that FlABCps improved the success rate of docking, compared to four state-of-the-art algorithms. The present results also showed superior docking performance of FlABCps, in particular for dealing with highly flexible ligands and proteins with a wide and shallow binding pocket.</description><subject>Alanine - analogs & derivatives</subject><subject>Alanine - chemistry</subject><subject>Algorithms</subject><subject>Artificial Intelligence</subject><subject>Binding Sites</subject><subject>Biphenyl Compounds - chemistry</subject><subject>Computer Simulation</subject><subject>Docking</subject><subject>Fitness</subject><subject>Ligands</subject><subject>Molecular Docking Simulation</subject><subject>Molecular Structure</subject><subject>Neprilysin - antagonists & inhibitors</subject><subject>Neprilysin - chemistry</subject><subject>Optimization</subject><subject>Protein Binding</subject><subject>Proteins</subject><subject>Proteins - chemistry</subject><subject>Stimuli</subject><subject>Swarm intelligence</subject><issn>1463-9076</issn><issn>1463-9084</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqNkE1PwzAMhiMEYmNw4QegHBFSIamTtD1OE1_SJHbYvaSpMwL9GE0q2L-nY2NnLrZlPXplP4RccnbLGWR3Rpo145AJfUTGXCiIMpaK48OcqBE58_6dMcYlh1MyihWTLE3SMXlddG1A10SVW-mmpGVrPlyzor3fVutCg97TCnXXDIuo0B5LqrvgrDNOV7RApKat2mZDv1x4o-uu_Xa1Cxvqg6v7yp2TE6srjxf7PiHLh_vl7Cmavzw-z6bzyIDiIYptXMRScY5gTCG4xQKkAFFYC5m2JUtiYZJUMQUSlNSYmgRkKQERiuHNCbnexQ4HfPboQ147b7CqdINt73OesCwBSNU_UJVmqYizgZ-Qmx1qutb7Dm2-7lytu03OWb51n8_kbPHrfjrAV_vcvqixPKB_suEHOWd_1Q</recordid><startdate>20150707</startdate><enddate>20150707</enddate><creator>Uehara, Shota</creator><creator>Fujimoto, Kazuhiro J</creator><creator>Tanaka, Shigenori</creator><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope></search><sort><creationdate>20150707</creationdate><title>Protein-ligand docking using fitness learning-based artificial bee colony with proximity stimuli</title><author>Uehara, Shota ; Fujimoto, Kazuhiro J ; Tanaka, Shigenori</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c361t-2f2b25611e3ccb41feb35434bff39afd0724c7860635365ae8c735d53ee3b463</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Alanine - analogs & derivatives</topic><topic>Alanine - chemistry</topic><topic>Algorithms</topic><topic>Artificial Intelligence</topic><topic>Binding Sites</topic><topic>Biphenyl Compounds - chemistry</topic><topic>Computer Simulation</topic><topic>Docking</topic><topic>Fitness</topic><topic>Ligands</topic><topic>Molecular Docking Simulation</topic><topic>Molecular Structure</topic><topic>Neprilysin - antagonists & inhibitors</topic><topic>Neprilysin - chemistry</topic><topic>Optimization</topic><topic>Protein Binding</topic><topic>Proteins</topic><topic>Proteins - chemistry</topic><topic>Stimuli</topic><topic>Swarm intelligence</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Uehara, Shota</creatorcontrib><creatorcontrib>Fujimoto, Kazuhiro J</creatorcontrib><creatorcontrib>Tanaka, Shigenori</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Physical chemistry chemical physics : PCCP</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Uehara, Shota</au><au>Fujimoto, Kazuhiro J</au><au>Tanaka, Shigenori</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Protein-ligand docking using fitness learning-based artificial bee colony with proximity stimuli</atitle><jtitle>Physical chemistry chemical physics : PCCP</jtitle><addtitle>Phys Chem Chem Phys</addtitle><date>2015-07-07</date><risdate>2015</risdate><volume>17</volume><issue>25</issue><spage>16412</spage><epage>16417</epage><pages>16412-16417</pages><issn>1463-9076</issn><eissn>1463-9084</eissn><abstract>Protein-ligand docking is an optimization problem, which aims to identify the binding pose of a ligand with the lowest energy in the active site of a target protein. In this study, we employed a novel optimization algorithm called fitness learning-based artificial bee colony with proximity stimuli (FlABCps) for docking. Simulation results revealed that FlABCps improved the success rate of docking, compared to four state-of-the-art algorithms. The present results also showed superior docking performance of FlABCps, in particular for dealing with highly flexible ligands and proteins with a wide and shallow binding pocket.</abstract><cop>England</cop><pmid>26050878</pmid><doi>10.1039/c5cp01394a</doi><tpages>6</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1463-9076 |
ispartof | Physical chemistry chemical physics : PCCP, 2015-07, Vol.17 (25), p.16412-16417 |
issn | 1463-9076 1463-9084 |
language | eng |
recordid | cdi_proquest_miscellaneous_1709733866 |
source | MEDLINE; Royal Society Of Chemistry Journals; Alma/SFX Local Collection |
subjects | Alanine - analogs & derivatives Alanine - chemistry Algorithms Artificial Intelligence Binding Sites Biphenyl Compounds - chemistry Computer Simulation Docking Fitness Ligands Molecular Docking Simulation Molecular Structure Neprilysin - antagonists & inhibitors Neprilysin - chemistry Optimization Protein Binding Proteins Proteins - chemistry Stimuli Swarm intelligence |
title | Protein-ligand docking using fitness learning-based artificial bee colony with proximity stimuli |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T17%3A50%3A32IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Protein-ligand%20docking%20using%20fitness%20learning-based%20artificial%20bee%20colony%20with%20proximity%20stimuli&rft.jtitle=Physical%20chemistry%20chemical%20physics%20:%20PCCP&rft.au=Uehara,%20Shota&rft.date=2015-07-07&rft.volume=17&rft.issue=25&rft.spage=16412&rft.epage=16417&rft.pages=16412-16417&rft.issn=1463-9076&rft.eissn=1463-9084&rft_id=info:doi/10.1039/c5cp01394a&rft_dat=%3Cproquest_cross%3E1709733866%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1689842997&rft_id=info:pmid/26050878&rfr_iscdi=true |