Antimicrobial and antioxidant amphiphilic random copolymers to address medical device-centered infections

[Display omitted] Microbial biofilms are known to support a number of human infections, including those related to medical devices. This work is focused on the development of novel dual-function amphiphilic random copolymers to be employed as coatings for medical devices. Particularly, copolymers we...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Acta biomaterialia 2015-08, Vol.22, p.131-140
Hauptverfasser: Taresco, Vincenzo, Crisante, Fernanda, Francolini, Iolanda, Martinelli, Andrea, D’Ilario, Lucio, Ricci-Vitiani, Lucia, Buccarelli, Mariachiara, Pietrelli, Loris, Piozzi, Antonella
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 140
container_issue
container_start_page 131
container_title Acta biomaterialia
container_volume 22
creator Taresco, Vincenzo
Crisante, Fernanda
Francolini, Iolanda
Martinelli, Andrea
D’Ilario, Lucio
Ricci-Vitiani, Lucia
Buccarelli, Mariachiara
Pietrelli, Loris
Piozzi, Antonella
description [Display omitted] Microbial biofilms are known to support a number of human infections, including those related to medical devices. This work is focused on the development of novel dual-function amphiphilic random copolymers to be employed as coatings for medical devices. Particularly, copolymers were obtained by polymerization of an antimicrobial cationic monomer (bearing tertiary amine) and an antioxidant and antimicrobial hydrophobic monomer (containing hydroxytyrosol, HTy). To obtain copolymers with various amphiphilic balance, different molar ratios of the two monomers were used. 1H NMR and DSC analyses evidenced that HTy aromatic rings are able to interact with each other leading to a supra-macromolecular re-arrangement and decrease the copolymer size in water. All copolymers showed good antioxidant activity and Fe2+ chelating ability. Cytotoxicity and hemolytic tests evidenced that the amphiphilic balance, cationic charge density and polymer size in solution are key determinants for polymer biocompatibility. As for the antimicrobial properties, the lowest minimal inhibitory concentration (MIC=40μg/mL) against Staphylococcus epidermidis was shown by the water-soluble copolymer having the highest HTy molar content (0.3). This copolymer layered onto catheter surfaces was also able to prevent staphylococcal adhesion. This approach permits not only prevention of biofilm infections but also reduction of the risk of emergence of drug-resistant bacteria. Indeed, the combination of two active compounds in the same polymer can provide a synergistic action against biofilms and suppress reactive species oxygen (ROS), known to promote the occurrence of antibiotic resistance.
doi_str_mv 10.1016/j.actbio.2015.04.023
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1709732117</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S1742706115001944</els_id><sourcerecordid>1701484456</sourcerecordid><originalsourceid>FETCH-LOGICAL-c428t-d80845e118210f0becd961d3bcf8845e7c4eb43785af6d98a426f193c3f234f43</originalsourceid><addsrcrecordid>eNqNkV9LHTEQxUNRqlW_QSn76MuumSSbZF8KIvYPCL7oc8gmE5rL7uY22Sv125vLtX2sQsIMzJkz8DuEfAbaAQV5temsW8eYOkah76joKOMfyClopVvVS31UeyVYq6iEE_KplA2lXAPTH8kJ6wdQWvBTEq-XNc7R5TRGOzV28fWvMf2JvtbGzttfsb4puibXYZobl7Zpep4xl2ZNjfU-YynNjD66auDxKTpsHS4rZvRNXAK66reUc3Ic7FTw4rWekcdvtw83P9q7--8_b67vWieYXluvqRY9AmgGNNARnR8keD66oPcD5QSOgivd2yD9oK1gMsDAHQ-MiyD4Gbk8-G5z-r3Dspo5FofTZBdMu2JA0UFxBqDeIwWhhejl21KpdeUr2d5VHKQVaikZg9nmONv8bICafXRmYw7RmX10hgpTo6trX14v7MZK89_S36yq4OtBgJXeU8Rsiou4uEo-V8bGp_j_Cy9guqzs</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1688003627</pqid></control><display><type>article</type><title>Antimicrobial and antioxidant amphiphilic random copolymers to address medical device-centered infections</title><source>MEDLINE</source><source>Elsevier ScienceDirect Journals Complete</source><creator>Taresco, Vincenzo ; Crisante, Fernanda ; Francolini, Iolanda ; Martinelli, Andrea ; D’Ilario, Lucio ; Ricci-Vitiani, Lucia ; Buccarelli, Mariachiara ; Pietrelli, Loris ; Piozzi, Antonella</creator><creatorcontrib>Taresco, Vincenzo ; Crisante, Fernanda ; Francolini, Iolanda ; Martinelli, Andrea ; D’Ilario, Lucio ; Ricci-Vitiani, Lucia ; Buccarelli, Mariachiara ; Pietrelli, Loris ; Piozzi, Antonella</creatorcontrib><description>[Display omitted] Microbial biofilms are known to support a number of human infections, including those related to medical devices. This work is focused on the development of novel dual-function amphiphilic random copolymers to be employed as coatings for medical devices. Particularly, copolymers were obtained by polymerization of an antimicrobial cationic monomer (bearing tertiary amine) and an antioxidant and antimicrobial hydrophobic monomer (containing hydroxytyrosol, HTy). To obtain copolymers with various amphiphilic balance, different molar ratios of the two monomers were used. 1H NMR and DSC analyses evidenced that HTy aromatic rings are able to interact with each other leading to a supra-macromolecular re-arrangement and decrease the copolymer size in water. All copolymers showed good antioxidant activity and Fe2+ chelating ability. Cytotoxicity and hemolytic tests evidenced that the amphiphilic balance, cationic charge density and polymer size in solution are key determinants for polymer biocompatibility. As for the antimicrobial properties, the lowest minimal inhibitory concentration (MIC=40μg/mL) against Staphylococcus epidermidis was shown by the water-soluble copolymer having the highest HTy molar content (0.3). This copolymer layered onto catheter surfaces was also able to prevent staphylococcal adhesion. This approach permits not only prevention of biofilm infections but also reduction of the risk of emergence of drug-resistant bacteria. Indeed, the combination of two active compounds in the same polymer can provide a synergistic action against biofilms and suppress reactive species oxygen (ROS), known to promote the occurrence of antibiotic resistance.</description><identifier>ISSN: 1742-7061</identifier><identifier>EISSN: 1878-7568</identifier><identifier>DOI: 10.1016/j.actbio.2015.04.023</identifier><identifier>PMID: 25917843</identifier><language>eng</language><publisher>England: Elsevier Ltd</publisher><subject>Amphiphilic copolymers ; Anti-Infective Agents - pharmacology ; Anti-Infective Agents - therapeutic use ; Antiinfectives and antibacterials ; Antimicrobial polymers ; Antioxidant polymers ; Antioxidants ; Antioxidants - pharmacology ; Antioxidants - therapeutic use ; Bacteria ; Biofilms ; Biphenyl Compounds - chemistry ; Calorimetry, Differential Scanning ; Catheters - microbiology ; Cationic ; Cell Death - drug effects ; Cell Line ; Chelating Agents - chemistry ; Copolymers ; Equipment and Supplies - microbiology ; Erythrocytes - drug effects ; Fibroblasts - cytology ; Fibroblasts - drug effects ; Hemoglobins - metabolism ; Humans ; Hydrodynamics ; Hydroxytyrosol ; Ions ; Iron - pharmacology ; Medical device infections ; Medical devices ; Microbial Sensitivity Tests ; Molecular Weight ; Monomers ; Picrates - chemistry ; Polymers - chemical synthesis ; Polymers - chemistry ; Polymers - therapeutic use ; Prosthesis-Related Infections - drug therapy ; Prosthesis-Related Infections - microbiology ; Proton Magnetic Resonance Spectroscopy ; Solubility ; Staphylococcus epidermidis ; Surface-Active Agents - pharmacology ; Surface-Active Agents - therapeutic use ; Water - chemistry</subject><ispartof>Acta biomaterialia, 2015-08, Vol.22, p.131-140</ispartof><rights>2015</rights><rights>Copyright © 2015. Published by Elsevier Ltd.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c428t-d80845e118210f0becd961d3bcf8845e7c4eb43785af6d98a426f193c3f234f43</citedby><cites>FETCH-LOGICAL-c428t-d80845e118210f0becd961d3bcf8845e7c4eb43785af6d98a426f193c3f234f43</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.actbio.2015.04.023$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/25917843$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Taresco, Vincenzo</creatorcontrib><creatorcontrib>Crisante, Fernanda</creatorcontrib><creatorcontrib>Francolini, Iolanda</creatorcontrib><creatorcontrib>Martinelli, Andrea</creatorcontrib><creatorcontrib>D’Ilario, Lucio</creatorcontrib><creatorcontrib>Ricci-Vitiani, Lucia</creatorcontrib><creatorcontrib>Buccarelli, Mariachiara</creatorcontrib><creatorcontrib>Pietrelli, Loris</creatorcontrib><creatorcontrib>Piozzi, Antonella</creatorcontrib><title>Antimicrobial and antioxidant amphiphilic random copolymers to address medical device-centered infections</title><title>Acta biomaterialia</title><addtitle>Acta Biomater</addtitle><description>[Display omitted] Microbial biofilms are known to support a number of human infections, including those related to medical devices. This work is focused on the development of novel dual-function amphiphilic random copolymers to be employed as coatings for medical devices. Particularly, copolymers were obtained by polymerization of an antimicrobial cationic monomer (bearing tertiary amine) and an antioxidant and antimicrobial hydrophobic monomer (containing hydroxytyrosol, HTy). To obtain copolymers with various amphiphilic balance, different molar ratios of the two monomers were used. 1H NMR and DSC analyses evidenced that HTy aromatic rings are able to interact with each other leading to a supra-macromolecular re-arrangement and decrease the copolymer size in water. All copolymers showed good antioxidant activity and Fe2+ chelating ability. Cytotoxicity and hemolytic tests evidenced that the amphiphilic balance, cationic charge density and polymer size in solution are key determinants for polymer biocompatibility. As for the antimicrobial properties, the lowest minimal inhibitory concentration (MIC=40μg/mL) against Staphylococcus epidermidis was shown by the water-soluble copolymer having the highest HTy molar content (0.3). This copolymer layered onto catheter surfaces was also able to prevent staphylococcal adhesion. This approach permits not only prevention of biofilm infections but also reduction of the risk of emergence of drug-resistant bacteria. Indeed, the combination of two active compounds in the same polymer can provide a synergistic action against biofilms and suppress reactive species oxygen (ROS), known to promote the occurrence of antibiotic resistance.</description><subject>Amphiphilic copolymers</subject><subject>Anti-Infective Agents - pharmacology</subject><subject>Anti-Infective Agents - therapeutic use</subject><subject>Antiinfectives and antibacterials</subject><subject>Antimicrobial polymers</subject><subject>Antioxidant polymers</subject><subject>Antioxidants</subject><subject>Antioxidants - pharmacology</subject><subject>Antioxidants - therapeutic use</subject><subject>Bacteria</subject><subject>Biofilms</subject><subject>Biphenyl Compounds - chemistry</subject><subject>Calorimetry, Differential Scanning</subject><subject>Catheters - microbiology</subject><subject>Cationic</subject><subject>Cell Death - drug effects</subject><subject>Cell Line</subject><subject>Chelating Agents - chemistry</subject><subject>Copolymers</subject><subject>Equipment and Supplies - microbiology</subject><subject>Erythrocytes - drug effects</subject><subject>Fibroblasts - cytology</subject><subject>Fibroblasts - drug effects</subject><subject>Hemoglobins - metabolism</subject><subject>Humans</subject><subject>Hydrodynamics</subject><subject>Hydroxytyrosol</subject><subject>Ions</subject><subject>Iron - pharmacology</subject><subject>Medical device infections</subject><subject>Medical devices</subject><subject>Microbial Sensitivity Tests</subject><subject>Molecular Weight</subject><subject>Monomers</subject><subject>Picrates - chemistry</subject><subject>Polymers - chemical synthesis</subject><subject>Polymers - chemistry</subject><subject>Polymers - therapeutic use</subject><subject>Prosthesis-Related Infections - drug therapy</subject><subject>Prosthesis-Related Infections - microbiology</subject><subject>Proton Magnetic Resonance Spectroscopy</subject><subject>Solubility</subject><subject>Staphylococcus epidermidis</subject><subject>Surface-Active Agents - pharmacology</subject><subject>Surface-Active Agents - therapeutic use</subject><subject>Water - chemistry</subject><issn>1742-7061</issn><issn>1878-7568</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqNkV9LHTEQxUNRqlW_QSn76MuumSSbZF8KIvYPCL7oc8gmE5rL7uY22Sv125vLtX2sQsIMzJkz8DuEfAbaAQV5temsW8eYOkah76joKOMfyClopVvVS31UeyVYq6iEE_KplA2lXAPTH8kJ6wdQWvBTEq-XNc7R5TRGOzV28fWvMf2JvtbGzttfsb4puibXYZobl7Zpep4xl2ZNjfU-YynNjD66auDxKTpsHS4rZvRNXAK66reUc3Ic7FTw4rWekcdvtw83P9q7--8_b67vWieYXluvqRY9AmgGNNARnR8keD66oPcD5QSOgivd2yD9oK1gMsDAHQ-MiyD4Gbk8-G5z-r3Dspo5FofTZBdMu2JA0UFxBqDeIwWhhejl21KpdeUr2d5VHKQVaikZg9nmONv8bICafXRmYw7RmX10hgpTo6trX14v7MZK89_S36yq4OtBgJXeU8Rsiou4uEo-V8bGp_j_Cy9guqzs</recordid><startdate>201508</startdate><enddate>201508</enddate><creator>Taresco, Vincenzo</creator><creator>Crisante, Fernanda</creator><creator>Francolini, Iolanda</creator><creator>Martinelli, Andrea</creator><creator>D’Ilario, Lucio</creator><creator>Ricci-Vitiani, Lucia</creator><creator>Buccarelli, Mariachiara</creator><creator>Pietrelli, Loris</creator><creator>Piozzi, Antonella</creator><general>Elsevier Ltd</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>7QO</scope><scope>7T7</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>P64</scope><scope>7SR</scope><scope>7TB</scope><scope>7U5</scope><scope>8BQ</scope><scope>F28</scope><scope>JG9</scope><scope>L7M</scope></search><sort><creationdate>201508</creationdate><title>Antimicrobial and antioxidant amphiphilic random copolymers to address medical device-centered infections</title><author>Taresco, Vincenzo ; Crisante, Fernanda ; Francolini, Iolanda ; Martinelli, Andrea ; D’Ilario, Lucio ; Ricci-Vitiani, Lucia ; Buccarelli, Mariachiara ; Pietrelli, Loris ; Piozzi, Antonella</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c428t-d80845e118210f0becd961d3bcf8845e7c4eb43785af6d98a426f193c3f234f43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Amphiphilic copolymers</topic><topic>Anti-Infective Agents - pharmacology</topic><topic>Anti-Infective Agents - therapeutic use</topic><topic>Antiinfectives and antibacterials</topic><topic>Antimicrobial polymers</topic><topic>Antioxidant polymers</topic><topic>Antioxidants</topic><topic>Antioxidants - pharmacology</topic><topic>Antioxidants - therapeutic use</topic><topic>Bacteria</topic><topic>Biofilms</topic><topic>Biphenyl Compounds - chemistry</topic><topic>Calorimetry, Differential Scanning</topic><topic>Catheters - microbiology</topic><topic>Cationic</topic><topic>Cell Death - drug effects</topic><topic>Cell Line</topic><topic>Chelating Agents - chemistry</topic><topic>Copolymers</topic><topic>Equipment and Supplies - microbiology</topic><topic>Erythrocytes - drug effects</topic><topic>Fibroblasts - cytology</topic><topic>Fibroblasts - drug effects</topic><topic>Hemoglobins - metabolism</topic><topic>Humans</topic><topic>Hydrodynamics</topic><topic>Hydroxytyrosol</topic><topic>Ions</topic><topic>Iron - pharmacology</topic><topic>Medical device infections</topic><topic>Medical devices</topic><topic>Microbial Sensitivity Tests</topic><topic>Molecular Weight</topic><topic>Monomers</topic><topic>Picrates - chemistry</topic><topic>Polymers - chemical synthesis</topic><topic>Polymers - chemistry</topic><topic>Polymers - therapeutic use</topic><topic>Prosthesis-Related Infections - drug therapy</topic><topic>Prosthesis-Related Infections - microbiology</topic><topic>Proton Magnetic Resonance Spectroscopy</topic><topic>Solubility</topic><topic>Staphylococcus epidermidis</topic><topic>Surface-Active Agents - pharmacology</topic><topic>Surface-Active Agents - therapeutic use</topic><topic>Water - chemistry</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Taresco, Vincenzo</creatorcontrib><creatorcontrib>Crisante, Fernanda</creatorcontrib><creatorcontrib>Francolini, Iolanda</creatorcontrib><creatorcontrib>Martinelli, Andrea</creatorcontrib><creatorcontrib>D’Ilario, Lucio</creatorcontrib><creatorcontrib>Ricci-Vitiani, Lucia</creatorcontrib><creatorcontrib>Buccarelli, Mariachiara</creatorcontrib><creatorcontrib>Pietrelli, Loris</creatorcontrib><creatorcontrib>Piozzi, Antonella</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>Biotechnology Research Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Acta biomaterialia</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Taresco, Vincenzo</au><au>Crisante, Fernanda</au><au>Francolini, Iolanda</au><au>Martinelli, Andrea</au><au>D’Ilario, Lucio</au><au>Ricci-Vitiani, Lucia</au><au>Buccarelli, Mariachiara</au><au>Pietrelli, Loris</au><au>Piozzi, Antonella</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Antimicrobial and antioxidant amphiphilic random copolymers to address medical device-centered infections</atitle><jtitle>Acta biomaterialia</jtitle><addtitle>Acta Biomater</addtitle><date>2015-08</date><risdate>2015</risdate><volume>22</volume><spage>131</spage><epage>140</epage><pages>131-140</pages><issn>1742-7061</issn><eissn>1878-7568</eissn><abstract>[Display omitted] Microbial biofilms are known to support a number of human infections, including those related to medical devices. This work is focused on the development of novel dual-function amphiphilic random copolymers to be employed as coatings for medical devices. Particularly, copolymers were obtained by polymerization of an antimicrobial cationic monomer (bearing tertiary amine) and an antioxidant and antimicrobial hydrophobic monomer (containing hydroxytyrosol, HTy). To obtain copolymers with various amphiphilic balance, different molar ratios of the two monomers were used. 1H NMR and DSC analyses evidenced that HTy aromatic rings are able to interact with each other leading to a supra-macromolecular re-arrangement and decrease the copolymer size in water. All copolymers showed good antioxidant activity and Fe2+ chelating ability. Cytotoxicity and hemolytic tests evidenced that the amphiphilic balance, cationic charge density and polymer size in solution are key determinants for polymer biocompatibility. As for the antimicrobial properties, the lowest minimal inhibitory concentration (MIC=40μg/mL) against Staphylococcus epidermidis was shown by the water-soluble copolymer having the highest HTy molar content (0.3). This copolymer layered onto catheter surfaces was also able to prevent staphylococcal adhesion. This approach permits not only prevention of biofilm infections but also reduction of the risk of emergence of drug-resistant bacteria. Indeed, the combination of two active compounds in the same polymer can provide a synergistic action against biofilms and suppress reactive species oxygen (ROS), known to promote the occurrence of antibiotic resistance.</abstract><cop>England</cop><pub>Elsevier Ltd</pub><pmid>25917843</pmid><doi>10.1016/j.actbio.2015.04.023</doi><tpages>10</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1742-7061
ispartof Acta biomaterialia, 2015-08, Vol.22, p.131-140
issn 1742-7061
1878-7568
language eng
recordid cdi_proquest_miscellaneous_1709732117
source MEDLINE; Elsevier ScienceDirect Journals Complete
subjects Amphiphilic copolymers
Anti-Infective Agents - pharmacology
Anti-Infective Agents - therapeutic use
Antiinfectives and antibacterials
Antimicrobial polymers
Antioxidant polymers
Antioxidants
Antioxidants - pharmacology
Antioxidants - therapeutic use
Bacteria
Biofilms
Biphenyl Compounds - chemistry
Calorimetry, Differential Scanning
Catheters - microbiology
Cationic
Cell Death - drug effects
Cell Line
Chelating Agents - chemistry
Copolymers
Equipment and Supplies - microbiology
Erythrocytes - drug effects
Fibroblasts - cytology
Fibroblasts - drug effects
Hemoglobins - metabolism
Humans
Hydrodynamics
Hydroxytyrosol
Ions
Iron - pharmacology
Medical device infections
Medical devices
Microbial Sensitivity Tests
Molecular Weight
Monomers
Picrates - chemistry
Polymers - chemical synthesis
Polymers - chemistry
Polymers - therapeutic use
Prosthesis-Related Infections - drug therapy
Prosthesis-Related Infections - microbiology
Proton Magnetic Resonance Spectroscopy
Solubility
Staphylococcus epidermidis
Surface-Active Agents - pharmacology
Surface-Active Agents - therapeutic use
Water - chemistry
title Antimicrobial and antioxidant amphiphilic random copolymers to address medical device-centered infections
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T15%3A18%3A19IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Antimicrobial%20and%20antioxidant%20amphiphilic%20random%20copolymers%20to%20address%20medical%20device-centered%20infections&rft.jtitle=Acta%20biomaterialia&rft.au=Taresco,%20Vincenzo&rft.date=2015-08&rft.volume=22&rft.spage=131&rft.epage=140&rft.pages=131-140&rft.issn=1742-7061&rft.eissn=1878-7568&rft_id=info:doi/10.1016/j.actbio.2015.04.023&rft_dat=%3Cproquest_cross%3E1701484456%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1688003627&rft_id=info:pmid/25917843&rft_els_id=S1742706115001944&rfr_iscdi=true