Antimicrobial and antioxidant amphiphilic random copolymers to address medical device-centered infections
[Display omitted] Microbial biofilms are known to support a number of human infections, including those related to medical devices. This work is focused on the development of novel dual-function amphiphilic random copolymers to be employed as coatings for medical devices. Particularly, copolymers we...
Gespeichert in:
Veröffentlicht in: | Acta biomaterialia 2015-08, Vol.22, p.131-140 |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 140 |
---|---|
container_issue | |
container_start_page | 131 |
container_title | Acta biomaterialia |
container_volume | 22 |
creator | Taresco, Vincenzo Crisante, Fernanda Francolini, Iolanda Martinelli, Andrea D’Ilario, Lucio Ricci-Vitiani, Lucia Buccarelli, Mariachiara Pietrelli, Loris Piozzi, Antonella |
description | [Display omitted]
Microbial biofilms are known to support a number of human infections, including those related to medical devices. This work is focused on the development of novel dual-function amphiphilic random copolymers to be employed as coatings for medical devices. Particularly, copolymers were obtained by polymerization of an antimicrobial cationic monomer (bearing tertiary amine) and an antioxidant and antimicrobial hydrophobic monomer (containing hydroxytyrosol, HTy). To obtain copolymers with various amphiphilic balance, different molar ratios of the two monomers were used. 1H NMR and DSC analyses evidenced that HTy aromatic rings are able to interact with each other leading to a supra-macromolecular re-arrangement and decrease the copolymer size in water. All copolymers showed good antioxidant activity and Fe2+ chelating ability. Cytotoxicity and hemolytic tests evidenced that the amphiphilic balance, cationic charge density and polymer size in solution are key determinants for polymer biocompatibility. As for the antimicrobial properties, the lowest minimal inhibitory concentration (MIC=40μg/mL) against Staphylococcus epidermidis was shown by the water-soluble copolymer having the highest HTy molar content (0.3). This copolymer layered onto catheter surfaces was also able to prevent staphylococcal adhesion. This approach permits not only prevention of biofilm infections but also reduction of the risk of emergence of drug-resistant bacteria. Indeed, the combination of two active compounds in the same polymer can provide a synergistic action against biofilms and suppress reactive species oxygen (ROS), known to promote the occurrence of antibiotic resistance. |
doi_str_mv | 10.1016/j.actbio.2015.04.023 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1709732117</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S1742706115001944</els_id><sourcerecordid>1701484456</sourcerecordid><originalsourceid>FETCH-LOGICAL-c428t-d80845e118210f0becd961d3bcf8845e7c4eb43785af6d98a426f193c3f234f43</originalsourceid><addsrcrecordid>eNqNkV9LHTEQxUNRqlW_QSn76MuumSSbZF8KIvYPCL7oc8gmE5rL7uY22Sv125vLtX2sQsIMzJkz8DuEfAbaAQV5temsW8eYOkah76joKOMfyClopVvVS31UeyVYq6iEE_KplA2lXAPTH8kJ6wdQWvBTEq-XNc7R5TRGOzV28fWvMf2JvtbGzttfsb4puibXYZobl7Zpep4xl2ZNjfU-YynNjD66auDxKTpsHS4rZvRNXAK66reUc3Ic7FTw4rWekcdvtw83P9q7--8_b67vWieYXluvqRY9AmgGNNARnR8keD66oPcD5QSOgivd2yD9oK1gMsDAHQ-MiyD4Gbk8-G5z-r3Dspo5FofTZBdMu2JA0UFxBqDeIwWhhejl21KpdeUr2d5VHKQVaikZg9nmONv8bICafXRmYw7RmX10hgpTo6trX14v7MZK89_S36yq4OtBgJXeU8Rsiou4uEo-V8bGp_j_Cy9guqzs</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1688003627</pqid></control><display><type>article</type><title>Antimicrobial and antioxidant amphiphilic random copolymers to address medical device-centered infections</title><source>MEDLINE</source><source>Elsevier ScienceDirect Journals Complete</source><creator>Taresco, Vincenzo ; Crisante, Fernanda ; Francolini, Iolanda ; Martinelli, Andrea ; D’Ilario, Lucio ; Ricci-Vitiani, Lucia ; Buccarelli, Mariachiara ; Pietrelli, Loris ; Piozzi, Antonella</creator><creatorcontrib>Taresco, Vincenzo ; Crisante, Fernanda ; Francolini, Iolanda ; Martinelli, Andrea ; D’Ilario, Lucio ; Ricci-Vitiani, Lucia ; Buccarelli, Mariachiara ; Pietrelli, Loris ; Piozzi, Antonella</creatorcontrib><description>[Display omitted]
Microbial biofilms are known to support a number of human infections, including those related to medical devices. This work is focused on the development of novel dual-function amphiphilic random copolymers to be employed as coatings for medical devices. Particularly, copolymers were obtained by polymerization of an antimicrobial cationic monomer (bearing tertiary amine) and an antioxidant and antimicrobial hydrophobic monomer (containing hydroxytyrosol, HTy). To obtain copolymers with various amphiphilic balance, different molar ratios of the two monomers were used. 1H NMR and DSC analyses evidenced that HTy aromatic rings are able to interact with each other leading to a supra-macromolecular re-arrangement and decrease the copolymer size in water. All copolymers showed good antioxidant activity and Fe2+ chelating ability. Cytotoxicity and hemolytic tests evidenced that the amphiphilic balance, cationic charge density and polymer size in solution are key determinants for polymer biocompatibility. As for the antimicrobial properties, the lowest minimal inhibitory concentration (MIC=40μg/mL) against Staphylococcus epidermidis was shown by the water-soluble copolymer having the highest HTy molar content (0.3). This copolymer layered onto catheter surfaces was also able to prevent staphylococcal adhesion. This approach permits not only prevention of biofilm infections but also reduction of the risk of emergence of drug-resistant bacteria. Indeed, the combination of two active compounds in the same polymer can provide a synergistic action against biofilms and suppress reactive species oxygen (ROS), known to promote the occurrence of antibiotic resistance.</description><identifier>ISSN: 1742-7061</identifier><identifier>EISSN: 1878-7568</identifier><identifier>DOI: 10.1016/j.actbio.2015.04.023</identifier><identifier>PMID: 25917843</identifier><language>eng</language><publisher>England: Elsevier Ltd</publisher><subject>Amphiphilic copolymers ; Anti-Infective Agents - pharmacology ; Anti-Infective Agents - therapeutic use ; Antiinfectives and antibacterials ; Antimicrobial polymers ; Antioxidant polymers ; Antioxidants ; Antioxidants - pharmacology ; Antioxidants - therapeutic use ; Bacteria ; Biofilms ; Biphenyl Compounds - chemistry ; Calorimetry, Differential Scanning ; Catheters - microbiology ; Cationic ; Cell Death - drug effects ; Cell Line ; Chelating Agents - chemistry ; Copolymers ; Equipment and Supplies - microbiology ; Erythrocytes - drug effects ; Fibroblasts - cytology ; Fibroblasts - drug effects ; Hemoglobins - metabolism ; Humans ; Hydrodynamics ; Hydroxytyrosol ; Ions ; Iron - pharmacology ; Medical device infections ; Medical devices ; Microbial Sensitivity Tests ; Molecular Weight ; Monomers ; Picrates - chemistry ; Polymers - chemical synthesis ; Polymers - chemistry ; Polymers - therapeutic use ; Prosthesis-Related Infections - drug therapy ; Prosthesis-Related Infections - microbiology ; Proton Magnetic Resonance Spectroscopy ; Solubility ; Staphylococcus epidermidis ; Surface-Active Agents - pharmacology ; Surface-Active Agents - therapeutic use ; Water - chemistry</subject><ispartof>Acta biomaterialia, 2015-08, Vol.22, p.131-140</ispartof><rights>2015</rights><rights>Copyright © 2015. Published by Elsevier Ltd.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c428t-d80845e118210f0becd961d3bcf8845e7c4eb43785af6d98a426f193c3f234f43</citedby><cites>FETCH-LOGICAL-c428t-d80845e118210f0becd961d3bcf8845e7c4eb43785af6d98a426f193c3f234f43</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.actbio.2015.04.023$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/25917843$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Taresco, Vincenzo</creatorcontrib><creatorcontrib>Crisante, Fernanda</creatorcontrib><creatorcontrib>Francolini, Iolanda</creatorcontrib><creatorcontrib>Martinelli, Andrea</creatorcontrib><creatorcontrib>D’Ilario, Lucio</creatorcontrib><creatorcontrib>Ricci-Vitiani, Lucia</creatorcontrib><creatorcontrib>Buccarelli, Mariachiara</creatorcontrib><creatorcontrib>Pietrelli, Loris</creatorcontrib><creatorcontrib>Piozzi, Antonella</creatorcontrib><title>Antimicrobial and antioxidant amphiphilic random copolymers to address medical device-centered infections</title><title>Acta biomaterialia</title><addtitle>Acta Biomater</addtitle><description>[Display omitted]
Microbial biofilms are known to support a number of human infections, including those related to medical devices. This work is focused on the development of novel dual-function amphiphilic random copolymers to be employed as coatings for medical devices. Particularly, copolymers were obtained by polymerization of an antimicrobial cationic monomer (bearing tertiary amine) and an antioxidant and antimicrobial hydrophobic monomer (containing hydroxytyrosol, HTy). To obtain copolymers with various amphiphilic balance, different molar ratios of the two monomers were used. 1H NMR and DSC analyses evidenced that HTy aromatic rings are able to interact with each other leading to a supra-macromolecular re-arrangement and decrease the copolymer size in water. All copolymers showed good antioxidant activity and Fe2+ chelating ability. Cytotoxicity and hemolytic tests evidenced that the amphiphilic balance, cationic charge density and polymer size in solution are key determinants for polymer biocompatibility. As for the antimicrobial properties, the lowest minimal inhibitory concentration (MIC=40μg/mL) against Staphylococcus epidermidis was shown by the water-soluble copolymer having the highest HTy molar content (0.3). This copolymer layered onto catheter surfaces was also able to prevent staphylococcal adhesion. This approach permits not only prevention of biofilm infections but also reduction of the risk of emergence of drug-resistant bacteria. Indeed, the combination of two active compounds in the same polymer can provide a synergistic action against biofilms and suppress reactive species oxygen (ROS), known to promote the occurrence of antibiotic resistance.</description><subject>Amphiphilic copolymers</subject><subject>Anti-Infective Agents - pharmacology</subject><subject>Anti-Infective Agents - therapeutic use</subject><subject>Antiinfectives and antibacterials</subject><subject>Antimicrobial polymers</subject><subject>Antioxidant polymers</subject><subject>Antioxidants</subject><subject>Antioxidants - pharmacology</subject><subject>Antioxidants - therapeutic use</subject><subject>Bacteria</subject><subject>Biofilms</subject><subject>Biphenyl Compounds - chemistry</subject><subject>Calorimetry, Differential Scanning</subject><subject>Catheters - microbiology</subject><subject>Cationic</subject><subject>Cell Death - drug effects</subject><subject>Cell Line</subject><subject>Chelating Agents - chemistry</subject><subject>Copolymers</subject><subject>Equipment and Supplies - microbiology</subject><subject>Erythrocytes - drug effects</subject><subject>Fibroblasts - cytology</subject><subject>Fibroblasts - drug effects</subject><subject>Hemoglobins - metabolism</subject><subject>Humans</subject><subject>Hydrodynamics</subject><subject>Hydroxytyrosol</subject><subject>Ions</subject><subject>Iron - pharmacology</subject><subject>Medical device infections</subject><subject>Medical devices</subject><subject>Microbial Sensitivity Tests</subject><subject>Molecular Weight</subject><subject>Monomers</subject><subject>Picrates - chemistry</subject><subject>Polymers - chemical synthesis</subject><subject>Polymers - chemistry</subject><subject>Polymers - therapeutic use</subject><subject>Prosthesis-Related Infections - drug therapy</subject><subject>Prosthesis-Related Infections - microbiology</subject><subject>Proton Magnetic Resonance Spectroscopy</subject><subject>Solubility</subject><subject>Staphylococcus epidermidis</subject><subject>Surface-Active Agents - pharmacology</subject><subject>Surface-Active Agents - therapeutic use</subject><subject>Water - chemistry</subject><issn>1742-7061</issn><issn>1878-7568</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqNkV9LHTEQxUNRqlW_QSn76MuumSSbZF8KIvYPCL7oc8gmE5rL7uY22Sv125vLtX2sQsIMzJkz8DuEfAbaAQV5temsW8eYOkah76joKOMfyClopVvVS31UeyVYq6iEE_KplA2lXAPTH8kJ6wdQWvBTEq-XNc7R5TRGOzV28fWvMf2JvtbGzttfsb4puibXYZobl7Zpep4xl2ZNjfU-YynNjD66auDxKTpsHS4rZvRNXAK66reUc3Ic7FTw4rWekcdvtw83P9q7--8_b67vWieYXluvqRY9AmgGNNARnR8keD66oPcD5QSOgivd2yD9oK1gMsDAHQ-MiyD4Gbk8-G5z-r3Dspo5FofTZBdMu2JA0UFxBqDeIwWhhejl21KpdeUr2d5VHKQVaikZg9nmONv8bICafXRmYw7RmX10hgpTo6trX14v7MZK89_S36yq4OtBgJXeU8Rsiou4uEo-V8bGp_j_Cy9guqzs</recordid><startdate>201508</startdate><enddate>201508</enddate><creator>Taresco, Vincenzo</creator><creator>Crisante, Fernanda</creator><creator>Francolini, Iolanda</creator><creator>Martinelli, Andrea</creator><creator>D’Ilario, Lucio</creator><creator>Ricci-Vitiani, Lucia</creator><creator>Buccarelli, Mariachiara</creator><creator>Pietrelli, Loris</creator><creator>Piozzi, Antonella</creator><general>Elsevier Ltd</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>7QO</scope><scope>7T7</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>P64</scope><scope>7SR</scope><scope>7TB</scope><scope>7U5</scope><scope>8BQ</scope><scope>F28</scope><scope>JG9</scope><scope>L7M</scope></search><sort><creationdate>201508</creationdate><title>Antimicrobial and antioxidant amphiphilic random copolymers to address medical device-centered infections</title><author>Taresco, Vincenzo ; Crisante, Fernanda ; Francolini, Iolanda ; Martinelli, Andrea ; D’Ilario, Lucio ; Ricci-Vitiani, Lucia ; Buccarelli, Mariachiara ; Pietrelli, Loris ; Piozzi, Antonella</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c428t-d80845e118210f0becd961d3bcf8845e7c4eb43785af6d98a426f193c3f234f43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Amphiphilic copolymers</topic><topic>Anti-Infective Agents - pharmacology</topic><topic>Anti-Infective Agents - therapeutic use</topic><topic>Antiinfectives and antibacterials</topic><topic>Antimicrobial polymers</topic><topic>Antioxidant polymers</topic><topic>Antioxidants</topic><topic>Antioxidants - pharmacology</topic><topic>Antioxidants - therapeutic use</topic><topic>Bacteria</topic><topic>Biofilms</topic><topic>Biphenyl Compounds - chemistry</topic><topic>Calorimetry, Differential Scanning</topic><topic>Catheters - microbiology</topic><topic>Cationic</topic><topic>Cell Death - drug effects</topic><topic>Cell Line</topic><topic>Chelating Agents - chemistry</topic><topic>Copolymers</topic><topic>Equipment and Supplies - microbiology</topic><topic>Erythrocytes - drug effects</topic><topic>Fibroblasts - cytology</topic><topic>Fibroblasts - drug effects</topic><topic>Hemoglobins - metabolism</topic><topic>Humans</topic><topic>Hydrodynamics</topic><topic>Hydroxytyrosol</topic><topic>Ions</topic><topic>Iron - pharmacology</topic><topic>Medical device infections</topic><topic>Medical devices</topic><topic>Microbial Sensitivity Tests</topic><topic>Molecular Weight</topic><topic>Monomers</topic><topic>Picrates - chemistry</topic><topic>Polymers - chemical synthesis</topic><topic>Polymers - chemistry</topic><topic>Polymers - therapeutic use</topic><topic>Prosthesis-Related Infections - drug therapy</topic><topic>Prosthesis-Related Infections - microbiology</topic><topic>Proton Magnetic Resonance Spectroscopy</topic><topic>Solubility</topic><topic>Staphylococcus epidermidis</topic><topic>Surface-Active Agents - pharmacology</topic><topic>Surface-Active Agents - therapeutic use</topic><topic>Water - chemistry</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Taresco, Vincenzo</creatorcontrib><creatorcontrib>Crisante, Fernanda</creatorcontrib><creatorcontrib>Francolini, Iolanda</creatorcontrib><creatorcontrib>Martinelli, Andrea</creatorcontrib><creatorcontrib>D’Ilario, Lucio</creatorcontrib><creatorcontrib>Ricci-Vitiani, Lucia</creatorcontrib><creatorcontrib>Buccarelli, Mariachiara</creatorcontrib><creatorcontrib>Pietrelli, Loris</creatorcontrib><creatorcontrib>Piozzi, Antonella</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>Biotechnology Research Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Acta biomaterialia</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Taresco, Vincenzo</au><au>Crisante, Fernanda</au><au>Francolini, Iolanda</au><au>Martinelli, Andrea</au><au>D’Ilario, Lucio</au><au>Ricci-Vitiani, Lucia</au><au>Buccarelli, Mariachiara</au><au>Pietrelli, Loris</au><au>Piozzi, Antonella</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Antimicrobial and antioxidant amphiphilic random copolymers to address medical device-centered infections</atitle><jtitle>Acta biomaterialia</jtitle><addtitle>Acta Biomater</addtitle><date>2015-08</date><risdate>2015</risdate><volume>22</volume><spage>131</spage><epage>140</epage><pages>131-140</pages><issn>1742-7061</issn><eissn>1878-7568</eissn><abstract>[Display omitted]
Microbial biofilms are known to support a number of human infections, including those related to medical devices. This work is focused on the development of novel dual-function amphiphilic random copolymers to be employed as coatings for medical devices. Particularly, copolymers were obtained by polymerization of an antimicrobial cationic monomer (bearing tertiary amine) and an antioxidant and antimicrobial hydrophobic monomer (containing hydroxytyrosol, HTy). To obtain copolymers with various amphiphilic balance, different molar ratios of the two monomers were used. 1H NMR and DSC analyses evidenced that HTy aromatic rings are able to interact with each other leading to a supra-macromolecular re-arrangement and decrease the copolymer size in water. All copolymers showed good antioxidant activity and Fe2+ chelating ability. Cytotoxicity and hemolytic tests evidenced that the amphiphilic balance, cationic charge density and polymer size in solution are key determinants for polymer biocompatibility. As for the antimicrobial properties, the lowest minimal inhibitory concentration (MIC=40μg/mL) against Staphylococcus epidermidis was shown by the water-soluble copolymer having the highest HTy molar content (0.3). This copolymer layered onto catheter surfaces was also able to prevent staphylococcal adhesion. This approach permits not only prevention of biofilm infections but also reduction of the risk of emergence of drug-resistant bacteria. Indeed, the combination of two active compounds in the same polymer can provide a synergistic action against biofilms and suppress reactive species oxygen (ROS), known to promote the occurrence of antibiotic resistance.</abstract><cop>England</cop><pub>Elsevier Ltd</pub><pmid>25917843</pmid><doi>10.1016/j.actbio.2015.04.023</doi><tpages>10</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1742-7061 |
ispartof | Acta biomaterialia, 2015-08, Vol.22, p.131-140 |
issn | 1742-7061 1878-7568 |
language | eng |
recordid | cdi_proquest_miscellaneous_1709732117 |
source | MEDLINE; Elsevier ScienceDirect Journals Complete |
subjects | Amphiphilic copolymers Anti-Infective Agents - pharmacology Anti-Infective Agents - therapeutic use Antiinfectives and antibacterials Antimicrobial polymers Antioxidant polymers Antioxidants Antioxidants - pharmacology Antioxidants - therapeutic use Bacteria Biofilms Biphenyl Compounds - chemistry Calorimetry, Differential Scanning Catheters - microbiology Cationic Cell Death - drug effects Cell Line Chelating Agents - chemistry Copolymers Equipment and Supplies - microbiology Erythrocytes - drug effects Fibroblasts - cytology Fibroblasts - drug effects Hemoglobins - metabolism Humans Hydrodynamics Hydroxytyrosol Ions Iron - pharmacology Medical device infections Medical devices Microbial Sensitivity Tests Molecular Weight Monomers Picrates - chemistry Polymers - chemical synthesis Polymers - chemistry Polymers - therapeutic use Prosthesis-Related Infections - drug therapy Prosthesis-Related Infections - microbiology Proton Magnetic Resonance Spectroscopy Solubility Staphylococcus epidermidis Surface-Active Agents - pharmacology Surface-Active Agents - therapeutic use Water - chemistry |
title | Antimicrobial and antioxidant amphiphilic random copolymers to address medical device-centered infections |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T15%3A18%3A19IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Antimicrobial%20and%20antioxidant%20amphiphilic%20random%20copolymers%20to%20address%20medical%20device-centered%20infections&rft.jtitle=Acta%20biomaterialia&rft.au=Taresco,%20Vincenzo&rft.date=2015-08&rft.volume=22&rft.spage=131&rft.epage=140&rft.pages=131-140&rft.issn=1742-7061&rft.eissn=1878-7568&rft_id=info:doi/10.1016/j.actbio.2015.04.023&rft_dat=%3Cproquest_cross%3E1701484456%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1688003627&rft_id=info:pmid/25917843&rft_els_id=S1742706115001944&rfr_iscdi=true |