Module for thermomechanical modeling of LWR fuel in multiphysics simulations
•A new fuel behavior code for multiphysics applications, FINIX, has been developed.•We present comparison with experiments and simulations, showing good agreement.•We demonstrate coupled fuel behavior, neutronics and thermal hydraulics simulations. We have developed a new light-weight fuel behavior...
Gespeichert in:
Veröffentlicht in: | Annals of nuclear energy 2015-10, Vol.84, p.111-121 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 121 |
---|---|
container_issue | |
container_start_page | 111 |
container_title | Annals of nuclear energy |
container_volume | 84 |
creator | Ikonen, Timo Loukusa, Henri Syrjälahti, Elina Valtavirta, Ville Leppänen, Jaakko Tulkki, Ville |
description | •A new fuel behavior code for multiphysics applications, FINIX, has been developed.•We present comparison with experiments and simulations, showing good agreement.•We demonstrate coupled fuel behavior, neutronics and thermal hydraulics simulations.
We have developed a new light-weight fuel behavior code FINIX, specifically designed for modeling of LWR fuel rods in multiphysics simulations. A thermomechanical description of the rod is required especially in transient conditions, where the heat transfer and changes in the rod’s physical dimensions are strongly coupled. In addition to the mechanical deformations, FINIX solves the temperature distribution in the rod and the heat flux from the cladding to the coolant, allowing two-way coupling of the fuel behavior simulation with both neutronics and thermal hydraulics simulations. In this paper, we describe the FINIX module and compare its performance with experimental data and FRAPTRAN-1.4, a widely used fuel behavior code. The comparison reveals good agreement in both cases. We also demonstrate how FINIX can be integrated into multiphysics simulations. Coupled with the Monte Carlo reactor physics code Serpent, we simulate a fast reactivity transient with the fuel temperature and fission power solved self-consistently. With the reactor dynamics codes TRAB-1D and TRAB3D/SMABRE, we simulate a fast power transient and a PWR main steam line break. The latter serves as an example of coupled fuel behavior, neutronics and system-level thermal hydraulics simulation. |
doi_str_mv | 10.1016/j.anucene.2014.11.004 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1709732076</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0306454914005842</els_id><sourcerecordid>1709732076</sourcerecordid><originalsourceid>FETCH-LOGICAL-c375t-e32cd379ad7effa2de2ae299337f61cd178ca9bb36e57f7da0b31c0c3876a7a13</originalsourceid><addsrcrecordid>eNqNkE1LxDAURYMoOI7-BCFLN63vNW3TrkTELxgRRHEZMsmLk6FtxqQV_PfOMO519bhw74F3GDtHyBGwvlznepgMDZQXgGWOmAOUB2yGjRRZgQCHbAYC6qysyvaYnaS0BsCiKcsZWzwFO3XEXYh8XFHsQ09mpQdvdMf7YKnzwwcPji_eX7ibqON-4P3UjX6z-k7eJJ78NurRhyGdsiOnu0Rnv3fO3u5uX28essXz_ePN9SIzQlZjRqIwVshWW0nO6cJSoaloWyGkq9FYlI3R7XIpaqqkk1bDUqABIxpZa6lRzNnFnruJ4XOiNKreJ0NdpwcKU1IooZWiAFn_p1pBDQ3sqNW-amJIKZJTm-h7Hb8VgtqJVmv1K1rtRCtEtRW93V3td7R9-ctTVMl4GgxZH8mMygb_B-EHQXSKOQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1705060801</pqid></control><display><type>article</type><title>Module for thermomechanical modeling of LWR fuel in multiphysics simulations</title><source>Access via ScienceDirect (Elsevier)</source><creator>Ikonen, Timo ; Loukusa, Henri ; Syrjälahti, Elina ; Valtavirta, Ville ; Leppänen, Jaakko ; Tulkki, Ville</creator><creatorcontrib>Ikonen, Timo ; Loukusa, Henri ; Syrjälahti, Elina ; Valtavirta, Ville ; Leppänen, Jaakko ; Tulkki, Ville</creatorcontrib><description>•A new fuel behavior code for multiphysics applications, FINIX, has been developed.•We present comparison with experiments and simulations, showing good agreement.•We demonstrate coupled fuel behavior, neutronics and thermal hydraulics simulations.
We have developed a new light-weight fuel behavior code FINIX, specifically designed for modeling of LWR fuel rods in multiphysics simulations. A thermomechanical description of the rod is required especially in transient conditions, where the heat transfer and changes in the rod’s physical dimensions are strongly coupled. In addition to the mechanical deformations, FINIX solves the temperature distribution in the rod and the heat flux from the cladding to the coolant, allowing two-way coupling of the fuel behavior simulation with both neutronics and thermal hydraulics simulations. In this paper, we describe the FINIX module and compare its performance with experimental data and FRAPTRAN-1.4, a widely used fuel behavior code. The comparison reveals good agreement in both cases. We also demonstrate how FINIX can be integrated into multiphysics simulations. Coupled with the Monte Carlo reactor physics code Serpent, we simulate a fast reactivity transient with the fuel temperature and fission power solved self-consistently. With the reactor dynamics codes TRAB-1D and TRAB3D/SMABRE, we simulate a fast power transient and a PWR main steam line break. The latter serves as an example of coupled fuel behavior, neutronics and system-level thermal hydraulics simulation.</description><identifier>ISSN: 0306-4549</identifier><identifier>EISSN: 1873-2100</identifier><identifier>DOI: 10.1016/j.anucene.2014.11.004</identifier><language>eng</language><publisher>Elsevier Ltd</publisher><subject>Computer simulation ; FINIX ; Fuel rod behavior ; Fuels ; Joining ; Light water reactors ; Mathematical models ; Multiphysics ; Nuclear fuel modeling ; Nuclear power generation ; Nuclear reactor components ; Steam electric power generation</subject><ispartof>Annals of nuclear energy, 2015-10, Vol.84, p.111-121</ispartof><rights>2014 Elsevier Ltd</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c375t-e32cd379ad7effa2de2ae299337f61cd178ca9bb36e57f7da0b31c0c3876a7a13</citedby><cites>FETCH-LOGICAL-c375t-e32cd379ad7effa2de2ae299337f61cd178ca9bb36e57f7da0b31c0c3876a7a13</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.anucene.2014.11.004$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids></links><search><creatorcontrib>Ikonen, Timo</creatorcontrib><creatorcontrib>Loukusa, Henri</creatorcontrib><creatorcontrib>Syrjälahti, Elina</creatorcontrib><creatorcontrib>Valtavirta, Ville</creatorcontrib><creatorcontrib>Leppänen, Jaakko</creatorcontrib><creatorcontrib>Tulkki, Ville</creatorcontrib><title>Module for thermomechanical modeling of LWR fuel in multiphysics simulations</title><title>Annals of nuclear energy</title><description>•A new fuel behavior code for multiphysics applications, FINIX, has been developed.•We present comparison with experiments and simulations, showing good agreement.•We demonstrate coupled fuel behavior, neutronics and thermal hydraulics simulations.
We have developed a new light-weight fuel behavior code FINIX, specifically designed for modeling of LWR fuel rods in multiphysics simulations. A thermomechanical description of the rod is required especially in transient conditions, where the heat transfer and changes in the rod’s physical dimensions are strongly coupled. In addition to the mechanical deformations, FINIX solves the temperature distribution in the rod and the heat flux from the cladding to the coolant, allowing two-way coupling of the fuel behavior simulation with both neutronics and thermal hydraulics simulations. In this paper, we describe the FINIX module and compare its performance with experimental data and FRAPTRAN-1.4, a widely used fuel behavior code. The comparison reveals good agreement in both cases. We also demonstrate how FINIX can be integrated into multiphysics simulations. Coupled with the Monte Carlo reactor physics code Serpent, we simulate a fast reactivity transient with the fuel temperature and fission power solved self-consistently. With the reactor dynamics codes TRAB-1D and TRAB3D/SMABRE, we simulate a fast power transient and a PWR main steam line break. The latter serves as an example of coupled fuel behavior, neutronics and system-level thermal hydraulics simulation.</description><subject>Computer simulation</subject><subject>FINIX</subject><subject>Fuel rod behavior</subject><subject>Fuels</subject><subject>Joining</subject><subject>Light water reactors</subject><subject>Mathematical models</subject><subject>Multiphysics</subject><subject>Nuclear fuel modeling</subject><subject>Nuclear power generation</subject><subject>Nuclear reactor components</subject><subject>Steam electric power generation</subject><issn>0306-4549</issn><issn>1873-2100</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><recordid>eNqNkE1LxDAURYMoOI7-BCFLN63vNW3TrkTELxgRRHEZMsmLk6FtxqQV_PfOMO519bhw74F3GDtHyBGwvlznepgMDZQXgGWOmAOUB2yGjRRZgQCHbAYC6qysyvaYnaS0BsCiKcsZWzwFO3XEXYh8XFHsQ09mpQdvdMf7YKnzwwcPji_eX7ibqON-4P3UjX6z-k7eJJ78NurRhyGdsiOnu0Rnv3fO3u5uX28essXz_ePN9SIzQlZjRqIwVshWW0nO6cJSoaloWyGkq9FYlI3R7XIpaqqkk1bDUqABIxpZa6lRzNnFnruJ4XOiNKreJ0NdpwcKU1IooZWiAFn_p1pBDQ3sqNW-amJIKZJTm-h7Hb8VgtqJVmv1K1rtRCtEtRW93V3td7R9-ctTVMl4GgxZH8mMygb_B-EHQXSKOQ</recordid><startdate>20151001</startdate><enddate>20151001</enddate><creator>Ikonen, Timo</creator><creator>Loukusa, Henri</creator><creator>Syrjälahti, Elina</creator><creator>Valtavirta, Ville</creator><creator>Leppänen, Jaakko</creator><creator>Tulkki, Ville</creator><general>Elsevier Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7ST</scope><scope>C1K</scope><scope>SOI</scope><scope>7SP</scope><scope>7SU</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>KR7</scope><scope>L7M</scope></search><sort><creationdate>20151001</creationdate><title>Module for thermomechanical modeling of LWR fuel in multiphysics simulations</title><author>Ikonen, Timo ; Loukusa, Henri ; Syrjälahti, Elina ; Valtavirta, Ville ; Leppänen, Jaakko ; Tulkki, Ville</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c375t-e32cd379ad7effa2de2ae299337f61cd178ca9bb36e57f7da0b31c0c3876a7a13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Computer simulation</topic><topic>FINIX</topic><topic>Fuel rod behavior</topic><topic>Fuels</topic><topic>Joining</topic><topic>Light water reactors</topic><topic>Mathematical models</topic><topic>Multiphysics</topic><topic>Nuclear fuel modeling</topic><topic>Nuclear power generation</topic><topic>Nuclear reactor components</topic><topic>Steam electric power generation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ikonen, Timo</creatorcontrib><creatorcontrib>Loukusa, Henri</creatorcontrib><creatorcontrib>Syrjälahti, Elina</creatorcontrib><creatorcontrib>Valtavirta, Ville</creatorcontrib><creatorcontrib>Leppänen, Jaakko</creatorcontrib><creatorcontrib>Tulkki, Ville</creatorcontrib><collection>CrossRef</collection><collection>Environment Abstracts</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Environment Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Environmental Engineering Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Annals of nuclear energy</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ikonen, Timo</au><au>Loukusa, Henri</au><au>Syrjälahti, Elina</au><au>Valtavirta, Ville</au><au>Leppänen, Jaakko</au><au>Tulkki, Ville</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Module for thermomechanical modeling of LWR fuel in multiphysics simulations</atitle><jtitle>Annals of nuclear energy</jtitle><date>2015-10-01</date><risdate>2015</risdate><volume>84</volume><spage>111</spage><epage>121</epage><pages>111-121</pages><issn>0306-4549</issn><eissn>1873-2100</eissn><abstract>•A new fuel behavior code for multiphysics applications, FINIX, has been developed.•We present comparison with experiments and simulations, showing good agreement.•We demonstrate coupled fuel behavior, neutronics and thermal hydraulics simulations.
We have developed a new light-weight fuel behavior code FINIX, specifically designed for modeling of LWR fuel rods in multiphysics simulations. A thermomechanical description of the rod is required especially in transient conditions, where the heat transfer and changes in the rod’s physical dimensions are strongly coupled. In addition to the mechanical deformations, FINIX solves the temperature distribution in the rod and the heat flux from the cladding to the coolant, allowing two-way coupling of the fuel behavior simulation with both neutronics and thermal hydraulics simulations. In this paper, we describe the FINIX module and compare its performance with experimental data and FRAPTRAN-1.4, a widely used fuel behavior code. The comparison reveals good agreement in both cases. We also demonstrate how FINIX can be integrated into multiphysics simulations. Coupled with the Monte Carlo reactor physics code Serpent, we simulate a fast reactivity transient with the fuel temperature and fission power solved self-consistently. With the reactor dynamics codes TRAB-1D and TRAB3D/SMABRE, we simulate a fast power transient and a PWR main steam line break. The latter serves as an example of coupled fuel behavior, neutronics and system-level thermal hydraulics simulation.</abstract><pub>Elsevier Ltd</pub><doi>10.1016/j.anucene.2014.11.004</doi><tpages>11</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0306-4549 |
ispartof | Annals of nuclear energy, 2015-10, Vol.84, p.111-121 |
issn | 0306-4549 1873-2100 |
language | eng |
recordid | cdi_proquest_miscellaneous_1709732076 |
source | Access via ScienceDirect (Elsevier) |
subjects | Computer simulation FINIX Fuel rod behavior Fuels Joining Light water reactors Mathematical models Multiphysics Nuclear fuel modeling Nuclear power generation Nuclear reactor components Steam electric power generation |
title | Module for thermomechanical modeling of LWR fuel in multiphysics simulations |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-23T03%3A36%3A46IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Module%20for%20thermomechanical%20modeling%20of%20LWR%20fuel%20in%20multiphysics%20simulations&rft.jtitle=Annals%20of%20nuclear%20energy&rft.au=Ikonen,%20Timo&rft.date=2015-10-01&rft.volume=84&rft.spage=111&rft.epage=121&rft.pages=111-121&rft.issn=0306-4549&rft.eissn=1873-2100&rft_id=info:doi/10.1016/j.anucene.2014.11.004&rft_dat=%3Cproquest_cross%3E1709732076%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1705060801&rft_id=info:pmid/&rft_els_id=S0306454914005842&rfr_iscdi=true |