Module for thermomechanical modeling of LWR fuel in multiphysics simulations

•A new fuel behavior code for multiphysics applications, FINIX, has been developed.•We present comparison with experiments and simulations, showing good agreement.•We demonstrate coupled fuel behavior, neutronics and thermal hydraulics simulations. We have developed a new light-weight fuel behavior...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Annals of nuclear energy 2015-10, Vol.84, p.111-121
Hauptverfasser: Ikonen, Timo, Loukusa, Henri, Syrjälahti, Elina, Valtavirta, Ville, Leppänen, Jaakko, Tulkki, Ville
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 121
container_issue
container_start_page 111
container_title Annals of nuclear energy
container_volume 84
creator Ikonen, Timo
Loukusa, Henri
Syrjälahti, Elina
Valtavirta, Ville
Leppänen, Jaakko
Tulkki, Ville
description •A new fuel behavior code for multiphysics applications, FINIX, has been developed.•We present comparison with experiments and simulations, showing good agreement.•We demonstrate coupled fuel behavior, neutronics and thermal hydraulics simulations. We have developed a new light-weight fuel behavior code FINIX, specifically designed for modeling of LWR fuel rods in multiphysics simulations. A thermomechanical description of the rod is required especially in transient conditions, where the heat transfer and changes in the rod’s physical dimensions are strongly coupled. In addition to the mechanical deformations, FINIX solves the temperature distribution in the rod and the heat flux from the cladding to the coolant, allowing two-way coupling of the fuel behavior simulation with both neutronics and thermal hydraulics simulations. In this paper, we describe the FINIX module and compare its performance with experimental data and FRAPTRAN-1.4, a widely used fuel behavior code. The comparison reveals good agreement in both cases. We also demonstrate how FINIX can be integrated into multiphysics simulations. Coupled with the Monte Carlo reactor physics code Serpent, we simulate a fast reactivity transient with the fuel temperature and fission power solved self-consistently. With the reactor dynamics codes TRAB-1D and TRAB3D/SMABRE, we simulate a fast power transient and a PWR main steam line break. The latter serves as an example of coupled fuel behavior, neutronics and system-level thermal hydraulics simulation.
doi_str_mv 10.1016/j.anucene.2014.11.004
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1709732076</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0306454914005842</els_id><sourcerecordid>1709732076</sourcerecordid><originalsourceid>FETCH-LOGICAL-c375t-e32cd379ad7effa2de2ae299337f61cd178ca9bb36e57f7da0b31c0c3876a7a13</originalsourceid><addsrcrecordid>eNqNkE1LxDAURYMoOI7-BCFLN63vNW3TrkTELxgRRHEZMsmLk6FtxqQV_PfOMO519bhw74F3GDtHyBGwvlznepgMDZQXgGWOmAOUB2yGjRRZgQCHbAYC6qysyvaYnaS0BsCiKcsZWzwFO3XEXYh8XFHsQ09mpQdvdMf7YKnzwwcPji_eX7ibqON-4P3UjX6z-k7eJJ78NurRhyGdsiOnu0Rnv3fO3u5uX28essXz_ePN9SIzQlZjRqIwVshWW0nO6cJSoaloWyGkq9FYlI3R7XIpaqqkk1bDUqABIxpZa6lRzNnFnruJ4XOiNKreJ0NdpwcKU1IooZWiAFn_p1pBDQ3sqNW-amJIKZJTm-h7Hb8VgtqJVmv1K1rtRCtEtRW93V3td7R9-ctTVMl4GgxZH8mMygb_B-EHQXSKOQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1705060801</pqid></control><display><type>article</type><title>Module for thermomechanical modeling of LWR fuel in multiphysics simulations</title><source>Access via ScienceDirect (Elsevier)</source><creator>Ikonen, Timo ; Loukusa, Henri ; Syrjälahti, Elina ; Valtavirta, Ville ; Leppänen, Jaakko ; Tulkki, Ville</creator><creatorcontrib>Ikonen, Timo ; Loukusa, Henri ; Syrjälahti, Elina ; Valtavirta, Ville ; Leppänen, Jaakko ; Tulkki, Ville</creatorcontrib><description>•A new fuel behavior code for multiphysics applications, FINIX, has been developed.•We present comparison with experiments and simulations, showing good agreement.•We demonstrate coupled fuel behavior, neutronics and thermal hydraulics simulations. We have developed a new light-weight fuel behavior code FINIX, specifically designed for modeling of LWR fuel rods in multiphysics simulations. A thermomechanical description of the rod is required especially in transient conditions, where the heat transfer and changes in the rod’s physical dimensions are strongly coupled. In addition to the mechanical deformations, FINIX solves the temperature distribution in the rod and the heat flux from the cladding to the coolant, allowing two-way coupling of the fuel behavior simulation with both neutronics and thermal hydraulics simulations. In this paper, we describe the FINIX module and compare its performance with experimental data and FRAPTRAN-1.4, a widely used fuel behavior code. The comparison reveals good agreement in both cases. We also demonstrate how FINIX can be integrated into multiphysics simulations. Coupled with the Monte Carlo reactor physics code Serpent, we simulate a fast reactivity transient with the fuel temperature and fission power solved self-consistently. With the reactor dynamics codes TRAB-1D and TRAB3D/SMABRE, we simulate a fast power transient and a PWR main steam line break. The latter serves as an example of coupled fuel behavior, neutronics and system-level thermal hydraulics simulation.</description><identifier>ISSN: 0306-4549</identifier><identifier>EISSN: 1873-2100</identifier><identifier>DOI: 10.1016/j.anucene.2014.11.004</identifier><language>eng</language><publisher>Elsevier Ltd</publisher><subject>Computer simulation ; FINIX ; Fuel rod behavior ; Fuels ; Joining ; Light water reactors ; Mathematical models ; Multiphysics ; Nuclear fuel modeling ; Nuclear power generation ; Nuclear reactor components ; Steam electric power generation</subject><ispartof>Annals of nuclear energy, 2015-10, Vol.84, p.111-121</ispartof><rights>2014 Elsevier Ltd</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c375t-e32cd379ad7effa2de2ae299337f61cd178ca9bb36e57f7da0b31c0c3876a7a13</citedby><cites>FETCH-LOGICAL-c375t-e32cd379ad7effa2de2ae299337f61cd178ca9bb36e57f7da0b31c0c3876a7a13</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.anucene.2014.11.004$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids></links><search><creatorcontrib>Ikonen, Timo</creatorcontrib><creatorcontrib>Loukusa, Henri</creatorcontrib><creatorcontrib>Syrjälahti, Elina</creatorcontrib><creatorcontrib>Valtavirta, Ville</creatorcontrib><creatorcontrib>Leppänen, Jaakko</creatorcontrib><creatorcontrib>Tulkki, Ville</creatorcontrib><title>Module for thermomechanical modeling of LWR fuel in multiphysics simulations</title><title>Annals of nuclear energy</title><description>•A new fuel behavior code for multiphysics applications, FINIX, has been developed.•We present comparison with experiments and simulations, showing good agreement.•We demonstrate coupled fuel behavior, neutronics and thermal hydraulics simulations. We have developed a new light-weight fuel behavior code FINIX, specifically designed for modeling of LWR fuel rods in multiphysics simulations. A thermomechanical description of the rod is required especially in transient conditions, where the heat transfer and changes in the rod’s physical dimensions are strongly coupled. In addition to the mechanical deformations, FINIX solves the temperature distribution in the rod and the heat flux from the cladding to the coolant, allowing two-way coupling of the fuel behavior simulation with both neutronics and thermal hydraulics simulations. In this paper, we describe the FINIX module and compare its performance with experimental data and FRAPTRAN-1.4, a widely used fuel behavior code. The comparison reveals good agreement in both cases. We also demonstrate how FINIX can be integrated into multiphysics simulations. Coupled with the Monte Carlo reactor physics code Serpent, we simulate a fast reactivity transient with the fuel temperature and fission power solved self-consistently. With the reactor dynamics codes TRAB-1D and TRAB3D/SMABRE, we simulate a fast power transient and a PWR main steam line break. The latter serves as an example of coupled fuel behavior, neutronics and system-level thermal hydraulics simulation.</description><subject>Computer simulation</subject><subject>FINIX</subject><subject>Fuel rod behavior</subject><subject>Fuels</subject><subject>Joining</subject><subject>Light water reactors</subject><subject>Mathematical models</subject><subject>Multiphysics</subject><subject>Nuclear fuel modeling</subject><subject>Nuclear power generation</subject><subject>Nuclear reactor components</subject><subject>Steam electric power generation</subject><issn>0306-4549</issn><issn>1873-2100</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><recordid>eNqNkE1LxDAURYMoOI7-BCFLN63vNW3TrkTELxgRRHEZMsmLk6FtxqQV_PfOMO519bhw74F3GDtHyBGwvlznepgMDZQXgGWOmAOUB2yGjRRZgQCHbAYC6qysyvaYnaS0BsCiKcsZWzwFO3XEXYh8XFHsQ09mpQdvdMf7YKnzwwcPji_eX7ibqON-4P3UjX6z-k7eJJ78NurRhyGdsiOnu0Rnv3fO3u5uX28essXz_ePN9SIzQlZjRqIwVshWW0nO6cJSoaloWyGkq9FYlI3R7XIpaqqkk1bDUqABIxpZa6lRzNnFnruJ4XOiNKreJ0NdpwcKU1IooZWiAFn_p1pBDQ3sqNW-amJIKZJTm-h7Hb8VgtqJVmv1K1rtRCtEtRW93V3td7R9-ctTVMl4GgxZH8mMygb_B-EHQXSKOQ</recordid><startdate>20151001</startdate><enddate>20151001</enddate><creator>Ikonen, Timo</creator><creator>Loukusa, Henri</creator><creator>Syrjälahti, Elina</creator><creator>Valtavirta, Ville</creator><creator>Leppänen, Jaakko</creator><creator>Tulkki, Ville</creator><general>Elsevier Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7ST</scope><scope>C1K</scope><scope>SOI</scope><scope>7SP</scope><scope>7SU</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>KR7</scope><scope>L7M</scope></search><sort><creationdate>20151001</creationdate><title>Module for thermomechanical modeling of LWR fuel in multiphysics simulations</title><author>Ikonen, Timo ; Loukusa, Henri ; Syrjälahti, Elina ; Valtavirta, Ville ; Leppänen, Jaakko ; Tulkki, Ville</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c375t-e32cd379ad7effa2de2ae299337f61cd178ca9bb36e57f7da0b31c0c3876a7a13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Computer simulation</topic><topic>FINIX</topic><topic>Fuel rod behavior</topic><topic>Fuels</topic><topic>Joining</topic><topic>Light water reactors</topic><topic>Mathematical models</topic><topic>Multiphysics</topic><topic>Nuclear fuel modeling</topic><topic>Nuclear power generation</topic><topic>Nuclear reactor components</topic><topic>Steam electric power generation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ikonen, Timo</creatorcontrib><creatorcontrib>Loukusa, Henri</creatorcontrib><creatorcontrib>Syrjälahti, Elina</creatorcontrib><creatorcontrib>Valtavirta, Ville</creatorcontrib><creatorcontrib>Leppänen, Jaakko</creatorcontrib><creatorcontrib>Tulkki, Ville</creatorcontrib><collection>CrossRef</collection><collection>Environment Abstracts</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Environment Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Environmental Engineering Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Annals of nuclear energy</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ikonen, Timo</au><au>Loukusa, Henri</au><au>Syrjälahti, Elina</au><au>Valtavirta, Ville</au><au>Leppänen, Jaakko</au><au>Tulkki, Ville</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Module for thermomechanical modeling of LWR fuel in multiphysics simulations</atitle><jtitle>Annals of nuclear energy</jtitle><date>2015-10-01</date><risdate>2015</risdate><volume>84</volume><spage>111</spage><epage>121</epage><pages>111-121</pages><issn>0306-4549</issn><eissn>1873-2100</eissn><abstract>•A new fuel behavior code for multiphysics applications, FINIX, has been developed.•We present comparison with experiments and simulations, showing good agreement.•We demonstrate coupled fuel behavior, neutronics and thermal hydraulics simulations. We have developed a new light-weight fuel behavior code FINIX, specifically designed for modeling of LWR fuel rods in multiphysics simulations. A thermomechanical description of the rod is required especially in transient conditions, where the heat transfer and changes in the rod’s physical dimensions are strongly coupled. In addition to the mechanical deformations, FINIX solves the temperature distribution in the rod and the heat flux from the cladding to the coolant, allowing two-way coupling of the fuel behavior simulation with both neutronics and thermal hydraulics simulations. In this paper, we describe the FINIX module and compare its performance with experimental data and FRAPTRAN-1.4, a widely used fuel behavior code. The comparison reveals good agreement in both cases. We also demonstrate how FINIX can be integrated into multiphysics simulations. Coupled with the Monte Carlo reactor physics code Serpent, we simulate a fast reactivity transient with the fuel temperature and fission power solved self-consistently. With the reactor dynamics codes TRAB-1D and TRAB3D/SMABRE, we simulate a fast power transient and a PWR main steam line break. The latter serves as an example of coupled fuel behavior, neutronics and system-level thermal hydraulics simulation.</abstract><pub>Elsevier Ltd</pub><doi>10.1016/j.anucene.2014.11.004</doi><tpages>11</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0306-4549
ispartof Annals of nuclear energy, 2015-10, Vol.84, p.111-121
issn 0306-4549
1873-2100
language eng
recordid cdi_proquest_miscellaneous_1709732076
source Access via ScienceDirect (Elsevier)
subjects Computer simulation
FINIX
Fuel rod behavior
Fuels
Joining
Light water reactors
Mathematical models
Multiphysics
Nuclear fuel modeling
Nuclear power generation
Nuclear reactor components
Steam electric power generation
title Module for thermomechanical modeling of LWR fuel in multiphysics simulations
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-23T03%3A36%3A46IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Module%20for%20thermomechanical%20modeling%20of%20LWR%20fuel%20in%20multiphysics%20simulations&rft.jtitle=Annals%20of%20nuclear%20energy&rft.au=Ikonen,%20Timo&rft.date=2015-10-01&rft.volume=84&rft.spage=111&rft.epage=121&rft.pages=111-121&rft.issn=0306-4549&rft.eissn=1873-2100&rft_id=info:doi/10.1016/j.anucene.2014.11.004&rft_dat=%3Cproquest_cross%3E1709732076%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1705060801&rft_id=info:pmid/&rft_els_id=S0306454914005842&rfr_iscdi=true