Coherent potential approximation for diffusion and wave propagation in topologically disordered systems

Using Gaussian integral transform techniques borrowed from functional-integral field theory and the replica trick we derive a version of the coherent potential approximation (CPA) suited for describing (i) the diffusive (hopping) motion of classical particles in a random environment, and (ii) the vi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physical review. B, Condensed matter and materials physics Condensed matter and materials physics, 2013-08, Vol.88 (6), Article 064203
Hauptverfasser: Köhler, S., Ruocco, G., Schirmacher, W.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 6
container_start_page
container_title Physical review. B, Condensed matter and materials physics
container_volume 88
creator Köhler, S.
Ruocco, G.
Schirmacher, W.
description Using Gaussian integral transform techniques borrowed from functional-integral field theory and the replica trick we derive a version of the coherent potential approximation (CPA) suited for describing (i) the diffusive (hopping) motion of classical particles in a random environment, and (ii) the vibrational properties of materials with spatially fluctuating elastic coefficients in topologically disordered materials. The effective medium in the present version of the CPA is not a lattice but a homogeneous and isotropic medium, representing an amorphous material on a mesoscopic scale. The transition from a frequency-independent to a frequency-dependent diffusivity (conductivity) is shown to correspond to the boson peak in the vibrational model. The anomalous regimes above the crossover are governed by a complex, frequency-dependent self-energy. The boson peak is shown to be stronger for non-Gaussian disorder than for Gaussian disorder. We demonstrate that the low-frequency nonanalyticity of the off-lattice version of the CPA leads to the correct long-time tails of the velocity autocorrelation function in the hopping problem and to low-frequency Rayleigh scattering in the wave problem. Furthermore we show that the present version of the CPA is capable of treating the percolative aspects of hopping transport adequately.
doi_str_mv 10.1103/PhysRevB.88.064203
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1709730880</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1709730880</sourcerecordid><originalsourceid>FETCH-LOGICAL-c329t-d9f51b4312a41bd2f5b69d0b7be9fa4e9902ad5fad59d8f4b1b2200f20ecd9c03</originalsourceid><addsrcrecordid>eNo1kE9LAzEQxYMoWKtfwFOOXrZOkt02OWrxHxQUUfAWkk3SrqSbNdlW99ubsnoY3gz8eMx7CF0SmBEC7PplM6RXu7-dcT6DeUmBHaEJqSooKKs-jvMOghdAKDlFZyl9ApBSlHSC1suwsdG2Pe5Cn6VRHquui-Gn2aq-CS12IWLTOLdLh0u1Bn-rvcUZ6dR6RJoW96ELPqybWnk_ZD6FaLKvwWlIvd2mc3TilE_24k-n6P3-7m35WKyeH56WN6uiZlT0hRGuIrpkhKqSaENdpefCgF5oK5wqrRBAlalcHmG4KzXRlAI4CrY2ogY2RVejb_7va2dTL7dNqq33qrVhlyRZgFgw4PyA0hGtY0gpWie7mEPHQRKQh1blf6uSczm2yn4BwKxwmA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1709730880</pqid></control><display><type>article</type><title>Coherent potential approximation for diffusion and wave propagation in topologically disordered systems</title><source>American Physical Society Journals</source><creator>Köhler, S. ; Ruocco, G. ; Schirmacher, W.</creator><creatorcontrib>Köhler, S. ; Ruocco, G. ; Schirmacher, W.</creatorcontrib><description>Using Gaussian integral transform techniques borrowed from functional-integral field theory and the replica trick we derive a version of the coherent potential approximation (CPA) suited for describing (i) the diffusive (hopping) motion of classical particles in a random environment, and (ii) the vibrational properties of materials with spatially fluctuating elastic coefficients in topologically disordered materials. The effective medium in the present version of the CPA is not a lattice but a homogeneous and isotropic medium, representing an amorphous material on a mesoscopic scale. The transition from a frequency-independent to a frequency-dependent diffusivity (conductivity) is shown to correspond to the boson peak in the vibrational model. The anomalous regimes above the crossover are governed by a complex, frequency-dependent self-energy. The boson peak is shown to be stronger for non-Gaussian disorder than for Gaussian disorder. We demonstrate that the low-frequency nonanalyticity of the off-lattice version of the CPA leads to the correct long-time tails of the velocity autocorrelation function in the hopping problem and to low-frequency Rayleigh scattering in the wave problem. Furthermore we show that the present version of the CPA is capable of treating the percolative aspects of hopping transport adequately.</description><identifier>ISSN: 1098-0121</identifier><identifier>EISSN: 1550-235X</identifier><identifier>DOI: 10.1103/PhysRevB.88.064203</identifier><language>eng</language><subject>Amorphous materials ; Bosons ; Coherent potential approximation ; Condensed matter ; Diffusion ; Disorders ; Field theory ; Gaussian</subject><ispartof>Physical review. B, Condensed matter and materials physics, 2013-08, Vol.88 (6), Article 064203</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c329t-d9f51b4312a41bd2f5b69d0b7be9fa4e9902ad5fad59d8f4b1b2200f20ecd9c03</citedby><cites>FETCH-LOGICAL-c329t-d9f51b4312a41bd2f5b69d0b7be9fa4e9902ad5fad59d8f4b1b2200f20ecd9c03</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,2876,2877,27924,27925</link.rule.ids></links><search><creatorcontrib>Köhler, S.</creatorcontrib><creatorcontrib>Ruocco, G.</creatorcontrib><creatorcontrib>Schirmacher, W.</creatorcontrib><title>Coherent potential approximation for diffusion and wave propagation in topologically disordered systems</title><title>Physical review. B, Condensed matter and materials physics</title><description>Using Gaussian integral transform techniques borrowed from functional-integral field theory and the replica trick we derive a version of the coherent potential approximation (CPA) suited for describing (i) the diffusive (hopping) motion of classical particles in a random environment, and (ii) the vibrational properties of materials with spatially fluctuating elastic coefficients in topologically disordered materials. The effective medium in the present version of the CPA is not a lattice but a homogeneous and isotropic medium, representing an amorphous material on a mesoscopic scale. The transition from a frequency-independent to a frequency-dependent diffusivity (conductivity) is shown to correspond to the boson peak in the vibrational model. The anomalous regimes above the crossover are governed by a complex, frequency-dependent self-energy. The boson peak is shown to be stronger for non-Gaussian disorder than for Gaussian disorder. We demonstrate that the low-frequency nonanalyticity of the off-lattice version of the CPA leads to the correct long-time tails of the velocity autocorrelation function in the hopping problem and to low-frequency Rayleigh scattering in the wave problem. Furthermore we show that the present version of the CPA is capable of treating the percolative aspects of hopping transport adequately.</description><subject>Amorphous materials</subject><subject>Bosons</subject><subject>Coherent potential approximation</subject><subject>Condensed matter</subject><subject>Diffusion</subject><subject>Disorders</subject><subject>Field theory</subject><subject>Gaussian</subject><issn>1098-0121</issn><issn>1550-235X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><recordid>eNo1kE9LAzEQxYMoWKtfwFOOXrZOkt02OWrxHxQUUfAWkk3SrqSbNdlW99ubsnoY3gz8eMx7CF0SmBEC7PplM6RXu7-dcT6DeUmBHaEJqSooKKs-jvMOghdAKDlFZyl9ApBSlHSC1suwsdG2Pe5Cn6VRHquui-Gn2aq-CS12IWLTOLdLh0u1Bn-rvcUZ6dR6RJoW96ELPqybWnk_ZD6FaLKvwWlIvd2mc3TilE_24k-n6P3-7m35WKyeH56WN6uiZlT0hRGuIrpkhKqSaENdpefCgF5oK5wqrRBAlalcHmG4KzXRlAI4CrY2ogY2RVejb_7va2dTL7dNqq33qrVhlyRZgFgw4PyA0hGtY0gpWie7mEPHQRKQh1blf6uSczm2yn4BwKxwmA</recordid><startdate>20130819</startdate><enddate>20130819</enddate><creator>Köhler, S.</creator><creator>Ruocco, G.</creator><creator>Schirmacher, W.</creator><scope>AAYXX</scope><scope>CITATION</scope><scope>7U5</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope></search><sort><creationdate>20130819</creationdate><title>Coherent potential approximation for diffusion and wave propagation in topologically disordered systems</title><author>Köhler, S. ; Ruocco, G. ; Schirmacher, W.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c329t-d9f51b4312a41bd2f5b69d0b7be9fa4e9902ad5fad59d8f4b1b2200f20ecd9c03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Amorphous materials</topic><topic>Bosons</topic><topic>Coherent potential approximation</topic><topic>Condensed matter</topic><topic>Diffusion</topic><topic>Disorders</topic><topic>Field theory</topic><topic>Gaussian</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Köhler, S.</creatorcontrib><creatorcontrib>Ruocco, G.</creatorcontrib><creatorcontrib>Schirmacher, W.</creatorcontrib><collection>CrossRef</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Physical review. B, Condensed matter and materials physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Köhler, S.</au><au>Ruocco, G.</au><au>Schirmacher, W.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Coherent potential approximation for diffusion and wave propagation in topologically disordered systems</atitle><jtitle>Physical review. B, Condensed matter and materials physics</jtitle><date>2013-08-19</date><risdate>2013</risdate><volume>88</volume><issue>6</issue><artnum>064203</artnum><issn>1098-0121</issn><eissn>1550-235X</eissn><abstract>Using Gaussian integral transform techniques borrowed from functional-integral field theory and the replica trick we derive a version of the coherent potential approximation (CPA) suited for describing (i) the diffusive (hopping) motion of classical particles in a random environment, and (ii) the vibrational properties of materials with spatially fluctuating elastic coefficients in topologically disordered materials. The effective medium in the present version of the CPA is not a lattice but a homogeneous and isotropic medium, representing an amorphous material on a mesoscopic scale. The transition from a frequency-independent to a frequency-dependent diffusivity (conductivity) is shown to correspond to the boson peak in the vibrational model. The anomalous regimes above the crossover are governed by a complex, frequency-dependent self-energy. The boson peak is shown to be stronger for non-Gaussian disorder than for Gaussian disorder. We demonstrate that the low-frequency nonanalyticity of the off-lattice version of the CPA leads to the correct long-time tails of the velocity autocorrelation function in the hopping problem and to low-frequency Rayleigh scattering in the wave problem. Furthermore we show that the present version of the CPA is capable of treating the percolative aspects of hopping transport adequately.</abstract><doi>10.1103/PhysRevB.88.064203</doi></addata></record>
fulltext fulltext
identifier ISSN: 1098-0121
ispartof Physical review. B, Condensed matter and materials physics, 2013-08, Vol.88 (6), Article 064203
issn 1098-0121
1550-235X
language eng
recordid cdi_proquest_miscellaneous_1709730880
source American Physical Society Journals
subjects Amorphous materials
Bosons
Coherent potential approximation
Condensed matter
Diffusion
Disorders
Field theory
Gaussian
title Coherent potential approximation for diffusion and wave propagation in topologically disordered systems
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-23T21%3A34%3A16IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Coherent%20potential%20approximation%20for%20diffusion%20and%20wave%20propagation%20in%20topologically%20disordered%20systems&rft.jtitle=Physical%20review.%20B,%20Condensed%20matter%20and%20materials%20physics&rft.au=K%C3%B6hler,%20S.&rft.date=2013-08-19&rft.volume=88&rft.issue=6&rft.artnum=064203&rft.issn=1098-0121&rft.eissn=1550-235X&rft_id=info:doi/10.1103/PhysRevB.88.064203&rft_dat=%3Cproquest_cross%3E1709730880%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1709730880&rft_id=info:pmid/&rfr_iscdi=true