Coherent potential approximation for diffusion and wave propagation in topologically disordered systems
Using Gaussian integral transform techniques borrowed from functional-integral field theory and the replica trick we derive a version of the coherent potential approximation (CPA) suited for describing (i) the diffusive (hopping) motion of classical particles in a random environment, and (ii) the vi...
Gespeichert in:
Veröffentlicht in: | Physical review. B, Condensed matter and materials physics Condensed matter and materials physics, 2013-08, Vol.88 (6), Article 064203 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 6 |
container_start_page | |
container_title | Physical review. B, Condensed matter and materials physics |
container_volume | 88 |
creator | Köhler, S. Ruocco, G. Schirmacher, W. |
description | Using Gaussian integral transform techniques borrowed from functional-integral field theory and the replica trick we derive a version of the coherent potential approximation (CPA) suited for describing (i) the diffusive (hopping) motion of classical particles in a random environment, and (ii) the vibrational properties of materials with spatially fluctuating elastic coefficients in topologically disordered materials. The effective medium in the present version of the CPA is not a lattice but a homogeneous and isotropic medium, representing an amorphous material on a mesoscopic scale. The transition from a frequency-independent to a frequency-dependent diffusivity (conductivity) is shown to correspond to the boson peak in the vibrational model. The anomalous regimes above the crossover are governed by a complex, frequency-dependent self-energy. The boson peak is shown to be stronger for non-Gaussian disorder than for Gaussian disorder. We demonstrate that the low-frequency nonanalyticity of the off-lattice version of the CPA leads to the correct long-time tails of the velocity autocorrelation function in the hopping problem and to low-frequency Rayleigh scattering in the wave problem. Furthermore we show that the present version of the CPA is capable of treating the percolative aspects of hopping transport adequately. |
doi_str_mv | 10.1103/PhysRevB.88.064203 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1709730880</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1709730880</sourcerecordid><originalsourceid>FETCH-LOGICAL-c329t-d9f51b4312a41bd2f5b69d0b7be9fa4e9902ad5fad59d8f4b1b2200f20ecd9c03</originalsourceid><addsrcrecordid>eNo1kE9LAzEQxYMoWKtfwFOOXrZOkt02OWrxHxQUUfAWkk3SrqSbNdlW99ubsnoY3gz8eMx7CF0SmBEC7PplM6RXu7-dcT6DeUmBHaEJqSooKKs-jvMOghdAKDlFZyl9ApBSlHSC1suwsdG2Pe5Cn6VRHquui-Gn2aq-CS12IWLTOLdLh0u1Bn-rvcUZ6dR6RJoW96ELPqybWnk_ZD6FaLKvwWlIvd2mc3TilE_24k-n6P3-7m35WKyeH56WN6uiZlT0hRGuIrpkhKqSaENdpefCgF5oK5wqrRBAlalcHmG4KzXRlAI4CrY2ogY2RVejb_7va2dTL7dNqq33qrVhlyRZgFgw4PyA0hGtY0gpWie7mEPHQRKQh1blf6uSczm2yn4BwKxwmA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1709730880</pqid></control><display><type>article</type><title>Coherent potential approximation for diffusion and wave propagation in topologically disordered systems</title><source>American Physical Society Journals</source><creator>Köhler, S. ; Ruocco, G. ; Schirmacher, W.</creator><creatorcontrib>Köhler, S. ; Ruocco, G. ; Schirmacher, W.</creatorcontrib><description>Using Gaussian integral transform techniques borrowed from functional-integral field theory and the replica trick we derive a version of the coherent potential approximation (CPA) suited for describing (i) the diffusive (hopping) motion of classical particles in a random environment, and (ii) the vibrational properties of materials with spatially fluctuating elastic coefficients in topologically disordered materials. The effective medium in the present version of the CPA is not a lattice but a homogeneous and isotropic medium, representing an amorphous material on a mesoscopic scale. The transition from a frequency-independent to a frequency-dependent diffusivity (conductivity) is shown to correspond to the boson peak in the vibrational model. The anomalous regimes above the crossover are governed by a complex, frequency-dependent self-energy. The boson peak is shown to be stronger for non-Gaussian disorder than for Gaussian disorder. We demonstrate that the low-frequency nonanalyticity of the off-lattice version of the CPA leads to the correct long-time tails of the velocity autocorrelation function in the hopping problem and to low-frequency Rayleigh scattering in the wave problem. Furthermore we show that the present version of the CPA is capable of treating the percolative aspects of hopping transport adequately.</description><identifier>ISSN: 1098-0121</identifier><identifier>EISSN: 1550-235X</identifier><identifier>DOI: 10.1103/PhysRevB.88.064203</identifier><language>eng</language><subject>Amorphous materials ; Bosons ; Coherent potential approximation ; Condensed matter ; Diffusion ; Disorders ; Field theory ; Gaussian</subject><ispartof>Physical review. B, Condensed matter and materials physics, 2013-08, Vol.88 (6), Article 064203</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c329t-d9f51b4312a41bd2f5b69d0b7be9fa4e9902ad5fad59d8f4b1b2200f20ecd9c03</citedby><cites>FETCH-LOGICAL-c329t-d9f51b4312a41bd2f5b69d0b7be9fa4e9902ad5fad59d8f4b1b2200f20ecd9c03</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,2876,2877,27924,27925</link.rule.ids></links><search><creatorcontrib>Köhler, S.</creatorcontrib><creatorcontrib>Ruocco, G.</creatorcontrib><creatorcontrib>Schirmacher, W.</creatorcontrib><title>Coherent potential approximation for diffusion and wave propagation in topologically disordered systems</title><title>Physical review. B, Condensed matter and materials physics</title><description>Using Gaussian integral transform techniques borrowed from functional-integral field theory and the replica trick we derive a version of the coherent potential approximation (CPA) suited for describing (i) the diffusive (hopping) motion of classical particles in a random environment, and (ii) the vibrational properties of materials with spatially fluctuating elastic coefficients in topologically disordered materials. The effective medium in the present version of the CPA is not a lattice but a homogeneous and isotropic medium, representing an amorphous material on a mesoscopic scale. The transition from a frequency-independent to a frequency-dependent diffusivity (conductivity) is shown to correspond to the boson peak in the vibrational model. The anomalous regimes above the crossover are governed by a complex, frequency-dependent self-energy. The boson peak is shown to be stronger for non-Gaussian disorder than for Gaussian disorder. We demonstrate that the low-frequency nonanalyticity of the off-lattice version of the CPA leads to the correct long-time tails of the velocity autocorrelation function in the hopping problem and to low-frequency Rayleigh scattering in the wave problem. Furthermore we show that the present version of the CPA is capable of treating the percolative aspects of hopping transport adequately.</description><subject>Amorphous materials</subject><subject>Bosons</subject><subject>Coherent potential approximation</subject><subject>Condensed matter</subject><subject>Diffusion</subject><subject>Disorders</subject><subject>Field theory</subject><subject>Gaussian</subject><issn>1098-0121</issn><issn>1550-235X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><recordid>eNo1kE9LAzEQxYMoWKtfwFOOXrZOkt02OWrxHxQUUfAWkk3SrqSbNdlW99ubsnoY3gz8eMx7CF0SmBEC7PplM6RXu7-dcT6DeUmBHaEJqSooKKs-jvMOghdAKDlFZyl9ApBSlHSC1suwsdG2Pe5Cn6VRHquui-Gn2aq-CS12IWLTOLdLh0u1Bn-rvcUZ6dR6RJoW96ELPqybWnk_ZD6FaLKvwWlIvd2mc3TilE_24k-n6P3-7m35WKyeH56WN6uiZlT0hRGuIrpkhKqSaENdpefCgF5oK5wqrRBAlalcHmG4KzXRlAI4CrY2ogY2RVejb_7va2dTL7dNqq33qrVhlyRZgFgw4PyA0hGtY0gpWie7mEPHQRKQh1blf6uSczm2yn4BwKxwmA</recordid><startdate>20130819</startdate><enddate>20130819</enddate><creator>Köhler, S.</creator><creator>Ruocco, G.</creator><creator>Schirmacher, W.</creator><scope>AAYXX</scope><scope>CITATION</scope><scope>7U5</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope></search><sort><creationdate>20130819</creationdate><title>Coherent potential approximation for diffusion and wave propagation in topologically disordered systems</title><author>Köhler, S. ; Ruocco, G. ; Schirmacher, W.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c329t-d9f51b4312a41bd2f5b69d0b7be9fa4e9902ad5fad59d8f4b1b2200f20ecd9c03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Amorphous materials</topic><topic>Bosons</topic><topic>Coherent potential approximation</topic><topic>Condensed matter</topic><topic>Diffusion</topic><topic>Disorders</topic><topic>Field theory</topic><topic>Gaussian</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Köhler, S.</creatorcontrib><creatorcontrib>Ruocco, G.</creatorcontrib><creatorcontrib>Schirmacher, W.</creatorcontrib><collection>CrossRef</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Physical review. B, Condensed matter and materials physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Köhler, S.</au><au>Ruocco, G.</au><au>Schirmacher, W.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Coherent potential approximation for diffusion and wave propagation in topologically disordered systems</atitle><jtitle>Physical review. B, Condensed matter and materials physics</jtitle><date>2013-08-19</date><risdate>2013</risdate><volume>88</volume><issue>6</issue><artnum>064203</artnum><issn>1098-0121</issn><eissn>1550-235X</eissn><abstract>Using Gaussian integral transform techniques borrowed from functional-integral field theory and the replica trick we derive a version of the coherent potential approximation (CPA) suited for describing (i) the diffusive (hopping) motion of classical particles in a random environment, and (ii) the vibrational properties of materials with spatially fluctuating elastic coefficients in topologically disordered materials. The effective medium in the present version of the CPA is not a lattice but a homogeneous and isotropic medium, representing an amorphous material on a mesoscopic scale. The transition from a frequency-independent to a frequency-dependent diffusivity (conductivity) is shown to correspond to the boson peak in the vibrational model. The anomalous regimes above the crossover are governed by a complex, frequency-dependent self-energy. The boson peak is shown to be stronger for non-Gaussian disorder than for Gaussian disorder. We demonstrate that the low-frequency nonanalyticity of the off-lattice version of the CPA leads to the correct long-time tails of the velocity autocorrelation function in the hopping problem and to low-frequency Rayleigh scattering in the wave problem. Furthermore we show that the present version of the CPA is capable of treating the percolative aspects of hopping transport adequately.</abstract><doi>10.1103/PhysRevB.88.064203</doi></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1098-0121 |
ispartof | Physical review. B, Condensed matter and materials physics, 2013-08, Vol.88 (6), Article 064203 |
issn | 1098-0121 1550-235X |
language | eng |
recordid | cdi_proquest_miscellaneous_1709730880 |
source | American Physical Society Journals |
subjects | Amorphous materials Bosons Coherent potential approximation Condensed matter Diffusion Disorders Field theory Gaussian |
title | Coherent potential approximation for diffusion and wave propagation in topologically disordered systems |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-23T21%3A34%3A16IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Coherent%20potential%20approximation%20for%20diffusion%20and%20wave%20propagation%20in%20topologically%20disordered%20systems&rft.jtitle=Physical%20review.%20B,%20Condensed%20matter%20and%20materials%20physics&rft.au=K%C3%B6hler,%20S.&rft.date=2013-08-19&rft.volume=88&rft.issue=6&rft.artnum=064203&rft.issn=1098-0121&rft.eissn=1550-235X&rft_id=info:doi/10.1103/PhysRevB.88.064203&rft_dat=%3Cproquest_cross%3E1709730880%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1709730880&rft_id=info:pmid/&rfr_iscdi=true |