Riemann–Stieltjes Optimal Control Problems for Uncertain Dynamic Systems
Motivated by uncertain parameters in nonlinear dynamic systems, we define a nonclassical optimal control problem where the cost functional is given by a Riemann-Stieltjes "functional of a functional." Using the properties of Riemann-Stieltjes sums, a minimum principle is generated from the...
Gespeichert in:
Veröffentlicht in: | Journal of guidance, control, and dynamics control, and dynamics, 2015-07, Vol.38 (7), p.1251-1263 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1263 |
---|---|
container_issue | 7 |
container_start_page | 1251 |
container_title | Journal of guidance, control, and dynamics |
container_volume | 38 |
creator | Ross, I Michael Proulx, Ronald J Karpenko, Mark Gong, Qi |
description | Motivated by uncertain parameters in nonlinear dynamic systems, we define a nonclassical optimal control problem where the cost functional is given by a Riemann-Stieltjes "functional of a functional." Using the properties of Riemann-Stieltjes sums, a minimum principle is generated from the limit of a semidiscretization. The optimal control minimizes a Riemann-Stieltjes integral of the Pontryagin Hamiltonian. The challenges associated with addressing the noncommutative operations of integration and minimization are addressed via cubature techniques leading to the concept of hyper-pseudospectral points. These ideas are then applied to address the practical uncertainties in control moment gyroscopes that drive an agile spacecraft. Ground test results conducted at Honeywell demonstrate the new principles. The Riemann-Stieltjes optimal control problem is a generalization of the unscented optimal control problem. It can be connected to many independently developed ideas across several disciplines: search theory, viability theory, quantum control and many other applications involving tychastic differential equations. |
doi_str_mv | 10.2514/1.G000505 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1709730245</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3710623511</sourcerecordid><originalsourceid>FETCH-LOGICAL-c353t-6a6625bbe1f7342014b4e1e08045c08c8057231a0049f6ab61f19466388e56523</originalsourceid><addsrcrecordid>eNp9kL9OwzAQhy0EEqUw8AaRWGBIuYv_ZkQFCqhSEaWz5USOlCqxi-0O3XgH3pAnIaidGJhu-H26-91HyCXCpODIbnEyAwAO_IiMkFOaU6XYMRmBpJhzKOGUnMW4BkAqUI7Iy1tre-Pc9-fXMrW2S2sbs8Umtb3psql3Kfguew2-6mwfs8aHbOVqG5JpXXa_c6Zv62y5i2lIz8lJY7poLw5zTFaPD-_Tp3y-mD1P7-Z5TTlNuTBCFLyqLDaSsgKQVcyiBQWM16BqBVwWFA0AKxthKoENlkyI4RHLBS_omFzv926C_9jamHTfxtp2nXHWb6NGCaWkUDA-oFd_0LXfBje00wUrmcLhiPqPQqEkSi4kDNTNnqqDjzHYRm_CYCnsNIL-da9RH9zTH8EWc4E</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1687175670</pqid></control><display><type>article</type><title>Riemann–Stieltjes Optimal Control Problems for Uncertain Dynamic Systems</title><source>Alma/SFX Local Collection</source><creator>Ross, I Michael ; Proulx, Ronald J ; Karpenko, Mark ; Gong, Qi</creator><creatorcontrib>Ross, I Michael ; Proulx, Ronald J ; Karpenko, Mark ; Gong, Qi</creatorcontrib><description>Motivated by uncertain parameters in nonlinear dynamic systems, we define a nonclassical optimal control problem where the cost functional is given by a Riemann-Stieltjes "functional of a functional." Using the properties of Riemann-Stieltjes sums, a minimum principle is generated from the limit of a semidiscretization. The optimal control minimizes a Riemann-Stieltjes integral of the Pontryagin Hamiltonian. The challenges associated with addressing the noncommutative operations of integration and minimization are addressed via cubature techniques leading to the concept of hyper-pseudospectral points. These ideas are then applied to address the practical uncertainties in control moment gyroscopes that drive an agile spacecraft. Ground test results conducted at Honeywell demonstrate the new principles. The Riemann-Stieltjes optimal control problem is a generalization of the unscented optimal control problem. It can be connected to many independently developed ideas across several disciplines: search theory, viability theory, quantum control and many other applications involving tychastic differential equations.</description><identifier>ISSN: 0731-5090</identifier><identifier>EISSN: 1533-3884</identifier><identifier>DOI: 10.2514/1.G000505</identifier><language>eng</language><publisher>Reston: American Institute of Aeronautics and Astronautics</publisher><subject>Applied mathematics ; Control moment gyroscopes ; Control systems ; Differential equations ; Dynamical systems ; Ground tests ; Mathematical functions ; Nonlinear dynamics ; Nonlinear systems ; Optimal control ; Optimization ; Parameter uncertainty ; Searching ; Spacecraft ; Stieltjes integral</subject><ispartof>Journal of guidance, control, and dynamics, 2015-07, Vol.38 (7), p.1251-1263</ispartof><rights>Copyright © 2014 by Isaac M. Ross, Ronald J. Proulx, and Mark Karpenko. Published by the American Institute of Aeronautics and Astronautics, Inc., with permission. Copies of this paper may be made for personal or internal use, on condition that the copier pay the $10.00 per-copy fee to the Copyright Clearance Center, Inc., 222 Rosewood Drive, Danvers, MA 01923; include the code 1533-3884/15 and $10.00 in correspondence with the CCC.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c353t-6a6625bbe1f7342014b4e1e08045c08c8057231a0049f6ab61f19466388e56523</citedby><cites>FETCH-LOGICAL-c353t-6a6625bbe1f7342014b4e1e08045c08c8057231a0049f6ab61f19466388e56523</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Ross, I Michael</creatorcontrib><creatorcontrib>Proulx, Ronald J</creatorcontrib><creatorcontrib>Karpenko, Mark</creatorcontrib><creatorcontrib>Gong, Qi</creatorcontrib><title>Riemann–Stieltjes Optimal Control Problems for Uncertain Dynamic Systems</title><title>Journal of guidance, control, and dynamics</title><description>Motivated by uncertain parameters in nonlinear dynamic systems, we define a nonclassical optimal control problem where the cost functional is given by a Riemann-Stieltjes "functional of a functional." Using the properties of Riemann-Stieltjes sums, a minimum principle is generated from the limit of a semidiscretization. The optimal control minimizes a Riemann-Stieltjes integral of the Pontryagin Hamiltonian. The challenges associated with addressing the noncommutative operations of integration and minimization are addressed via cubature techniques leading to the concept of hyper-pseudospectral points. These ideas are then applied to address the practical uncertainties in control moment gyroscopes that drive an agile spacecraft. Ground test results conducted at Honeywell demonstrate the new principles. The Riemann-Stieltjes optimal control problem is a generalization of the unscented optimal control problem. It can be connected to many independently developed ideas across several disciplines: search theory, viability theory, quantum control and many other applications involving tychastic differential equations.</description><subject>Applied mathematics</subject><subject>Control moment gyroscopes</subject><subject>Control systems</subject><subject>Differential equations</subject><subject>Dynamical systems</subject><subject>Ground tests</subject><subject>Mathematical functions</subject><subject>Nonlinear dynamics</subject><subject>Nonlinear systems</subject><subject>Optimal control</subject><subject>Optimization</subject><subject>Parameter uncertainty</subject><subject>Searching</subject><subject>Spacecraft</subject><subject>Stieltjes integral</subject><issn>0731-5090</issn><issn>1533-3884</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><recordid>eNp9kL9OwzAQhy0EEqUw8AaRWGBIuYv_ZkQFCqhSEaWz5USOlCqxi-0O3XgH3pAnIaidGJhu-H26-91HyCXCpODIbnEyAwAO_IiMkFOaU6XYMRmBpJhzKOGUnMW4BkAqUI7Iy1tre-Pc9-fXMrW2S2sbs8Umtb3psql3Kfguew2-6mwfs8aHbOVqG5JpXXa_c6Zv62y5i2lIz8lJY7poLw5zTFaPD-_Tp3y-mD1P7-Z5TTlNuTBCFLyqLDaSsgKQVcyiBQWM16BqBVwWFA0AKxthKoENlkyI4RHLBS_omFzv926C_9jamHTfxtp2nXHWb6NGCaWkUDA-oFd_0LXfBje00wUrmcLhiPqPQqEkSi4kDNTNnqqDjzHYRm_CYCnsNIL-da9RH9zTH8EWc4E</recordid><startdate>20150701</startdate><enddate>20150701</enddate><creator>Ross, I Michael</creator><creator>Proulx, Ronald J</creator><creator>Karpenko, Mark</creator><creator>Gong, Qi</creator><general>American Institute of Aeronautics and Astronautics</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>H8D</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20150701</creationdate><title>Riemann–Stieltjes Optimal Control Problems for Uncertain Dynamic Systems</title><author>Ross, I Michael ; Proulx, Ronald J ; Karpenko, Mark ; Gong, Qi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c353t-6a6625bbe1f7342014b4e1e08045c08c8057231a0049f6ab61f19466388e56523</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Applied mathematics</topic><topic>Control moment gyroscopes</topic><topic>Control systems</topic><topic>Differential equations</topic><topic>Dynamical systems</topic><topic>Ground tests</topic><topic>Mathematical functions</topic><topic>Nonlinear dynamics</topic><topic>Nonlinear systems</topic><topic>Optimal control</topic><topic>Optimization</topic><topic>Parameter uncertainty</topic><topic>Searching</topic><topic>Spacecraft</topic><topic>Stieltjes integral</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ross, I Michael</creatorcontrib><creatorcontrib>Proulx, Ronald J</creatorcontrib><creatorcontrib>Karpenko, Mark</creatorcontrib><creatorcontrib>Gong, Qi</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Journal of guidance, control, and dynamics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ross, I Michael</au><au>Proulx, Ronald J</au><au>Karpenko, Mark</au><au>Gong, Qi</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Riemann–Stieltjes Optimal Control Problems for Uncertain Dynamic Systems</atitle><jtitle>Journal of guidance, control, and dynamics</jtitle><date>2015-07-01</date><risdate>2015</risdate><volume>38</volume><issue>7</issue><spage>1251</spage><epage>1263</epage><pages>1251-1263</pages><issn>0731-5090</issn><eissn>1533-3884</eissn><abstract>Motivated by uncertain parameters in nonlinear dynamic systems, we define a nonclassical optimal control problem where the cost functional is given by a Riemann-Stieltjes "functional of a functional." Using the properties of Riemann-Stieltjes sums, a minimum principle is generated from the limit of a semidiscretization. The optimal control minimizes a Riemann-Stieltjes integral of the Pontryagin Hamiltonian. The challenges associated with addressing the noncommutative operations of integration and minimization are addressed via cubature techniques leading to the concept of hyper-pseudospectral points. These ideas are then applied to address the practical uncertainties in control moment gyroscopes that drive an agile spacecraft. Ground test results conducted at Honeywell demonstrate the new principles. The Riemann-Stieltjes optimal control problem is a generalization of the unscented optimal control problem. It can be connected to many independently developed ideas across several disciplines: search theory, viability theory, quantum control and many other applications involving tychastic differential equations.</abstract><cop>Reston</cop><pub>American Institute of Aeronautics and Astronautics</pub><doi>10.2514/1.G000505</doi><tpages>13</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0731-5090 |
ispartof | Journal of guidance, control, and dynamics, 2015-07, Vol.38 (7), p.1251-1263 |
issn | 0731-5090 1533-3884 |
language | eng |
recordid | cdi_proquest_miscellaneous_1709730245 |
source | Alma/SFX Local Collection |
subjects | Applied mathematics Control moment gyroscopes Control systems Differential equations Dynamical systems Ground tests Mathematical functions Nonlinear dynamics Nonlinear systems Optimal control Optimization Parameter uncertainty Searching Spacecraft Stieltjes integral |
title | Riemann–Stieltjes Optimal Control Problems for Uncertain Dynamic Systems |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-28T18%3A08%3A35IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Riemann%E2%80%93Stieltjes%20Optimal%20Control%20Problems%20for%20Uncertain%20Dynamic%20Systems&rft.jtitle=Journal%20of%20guidance,%20control,%20and%20dynamics&rft.au=Ross,%20I%20Michael&rft.date=2015-07-01&rft.volume=38&rft.issue=7&rft.spage=1251&rft.epage=1263&rft.pages=1251-1263&rft.issn=0731-5090&rft.eissn=1533-3884&rft_id=info:doi/10.2514/1.G000505&rft_dat=%3Cproquest_cross%3E3710623511%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1687175670&rft_id=info:pmid/&rfr_iscdi=true |