Riemann–Stieltjes Optimal Control Problems for Uncertain Dynamic Systems

Motivated by uncertain parameters in nonlinear dynamic systems, we define a nonclassical optimal control problem where the cost functional is given by a Riemann-Stieltjes "functional of a functional." Using the properties of Riemann-Stieltjes sums, a minimum principle is generated from the...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of guidance, control, and dynamics control, and dynamics, 2015-07, Vol.38 (7), p.1251-1263
Hauptverfasser: Ross, I Michael, Proulx, Ronald J, Karpenko, Mark, Gong, Qi
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1263
container_issue 7
container_start_page 1251
container_title Journal of guidance, control, and dynamics
container_volume 38
creator Ross, I Michael
Proulx, Ronald J
Karpenko, Mark
Gong, Qi
description Motivated by uncertain parameters in nonlinear dynamic systems, we define a nonclassical optimal control problem where the cost functional is given by a Riemann-Stieltjes "functional of a functional." Using the properties of Riemann-Stieltjes sums, a minimum principle is generated from the limit of a semidiscretization. The optimal control minimizes a Riemann-Stieltjes integral of the Pontryagin Hamiltonian. The challenges associated with addressing the noncommutative operations of integration and minimization are addressed via cubature techniques leading to the concept of hyper-pseudospectral points. These ideas are then applied to address the practical uncertainties in control moment gyroscopes that drive an agile spacecraft. Ground test results conducted at Honeywell demonstrate the new principles. The Riemann-Stieltjes optimal control problem is a generalization of the unscented optimal control problem. It can be connected to many independently developed ideas across several disciplines: search theory, viability theory, quantum control and many other applications involving tychastic differential equations.
doi_str_mv 10.2514/1.G000505
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1709730245</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3710623511</sourcerecordid><originalsourceid>FETCH-LOGICAL-c353t-6a6625bbe1f7342014b4e1e08045c08c8057231a0049f6ab61f19466388e56523</originalsourceid><addsrcrecordid>eNp9kL9OwzAQhy0EEqUw8AaRWGBIuYv_ZkQFCqhSEaWz5USOlCqxi-0O3XgH3pAnIaidGJhu-H26-91HyCXCpODIbnEyAwAO_IiMkFOaU6XYMRmBpJhzKOGUnMW4BkAqUI7Iy1tre-Pc9-fXMrW2S2sbs8Umtb3psql3Kfguew2-6mwfs8aHbOVqG5JpXXa_c6Zv62y5i2lIz8lJY7poLw5zTFaPD-_Tp3y-mD1P7-Z5TTlNuTBCFLyqLDaSsgKQVcyiBQWM16BqBVwWFA0AKxthKoENlkyI4RHLBS_omFzv926C_9jamHTfxtp2nXHWb6NGCaWkUDA-oFd_0LXfBje00wUrmcLhiPqPQqEkSi4kDNTNnqqDjzHYRm_CYCnsNIL-da9RH9zTH8EWc4E</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1687175670</pqid></control><display><type>article</type><title>Riemann–Stieltjes Optimal Control Problems for Uncertain Dynamic Systems</title><source>Alma/SFX Local Collection</source><creator>Ross, I Michael ; Proulx, Ronald J ; Karpenko, Mark ; Gong, Qi</creator><creatorcontrib>Ross, I Michael ; Proulx, Ronald J ; Karpenko, Mark ; Gong, Qi</creatorcontrib><description>Motivated by uncertain parameters in nonlinear dynamic systems, we define a nonclassical optimal control problem where the cost functional is given by a Riemann-Stieltjes "functional of a functional." Using the properties of Riemann-Stieltjes sums, a minimum principle is generated from the limit of a semidiscretization. The optimal control minimizes a Riemann-Stieltjes integral of the Pontryagin Hamiltonian. The challenges associated with addressing the noncommutative operations of integration and minimization are addressed via cubature techniques leading to the concept of hyper-pseudospectral points. These ideas are then applied to address the practical uncertainties in control moment gyroscopes that drive an agile spacecraft. Ground test results conducted at Honeywell demonstrate the new principles. The Riemann-Stieltjes optimal control problem is a generalization of the unscented optimal control problem. It can be connected to many independently developed ideas across several disciplines: search theory, viability theory, quantum control and many other applications involving tychastic differential equations.</description><identifier>ISSN: 0731-5090</identifier><identifier>EISSN: 1533-3884</identifier><identifier>DOI: 10.2514/1.G000505</identifier><language>eng</language><publisher>Reston: American Institute of Aeronautics and Astronautics</publisher><subject>Applied mathematics ; Control moment gyroscopes ; Control systems ; Differential equations ; Dynamical systems ; Ground tests ; Mathematical functions ; Nonlinear dynamics ; Nonlinear systems ; Optimal control ; Optimization ; Parameter uncertainty ; Searching ; Spacecraft ; Stieltjes integral</subject><ispartof>Journal of guidance, control, and dynamics, 2015-07, Vol.38 (7), p.1251-1263</ispartof><rights>Copyright © 2014 by Isaac M. Ross, Ronald J. Proulx, and Mark Karpenko. Published by the American Institute of Aeronautics and Astronautics, Inc., with permission. Copies of this paper may be made for personal or internal use, on condition that the copier pay the $10.00 per-copy fee to the Copyright Clearance Center, Inc., 222 Rosewood Drive, Danvers, MA 01923; include the code 1533-3884/15 and $10.00 in correspondence with the CCC.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c353t-6a6625bbe1f7342014b4e1e08045c08c8057231a0049f6ab61f19466388e56523</citedby><cites>FETCH-LOGICAL-c353t-6a6625bbe1f7342014b4e1e08045c08c8057231a0049f6ab61f19466388e56523</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Ross, I Michael</creatorcontrib><creatorcontrib>Proulx, Ronald J</creatorcontrib><creatorcontrib>Karpenko, Mark</creatorcontrib><creatorcontrib>Gong, Qi</creatorcontrib><title>Riemann–Stieltjes Optimal Control Problems for Uncertain Dynamic Systems</title><title>Journal of guidance, control, and dynamics</title><description>Motivated by uncertain parameters in nonlinear dynamic systems, we define a nonclassical optimal control problem where the cost functional is given by a Riemann-Stieltjes "functional of a functional." Using the properties of Riemann-Stieltjes sums, a minimum principle is generated from the limit of a semidiscretization. The optimal control minimizes a Riemann-Stieltjes integral of the Pontryagin Hamiltonian. The challenges associated with addressing the noncommutative operations of integration and minimization are addressed via cubature techniques leading to the concept of hyper-pseudospectral points. These ideas are then applied to address the practical uncertainties in control moment gyroscopes that drive an agile spacecraft. Ground test results conducted at Honeywell demonstrate the new principles. The Riemann-Stieltjes optimal control problem is a generalization of the unscented optimal control problem. It can be connected to many independently developed ideas across several disciplines: search theory, viability theory, quantum control and many other applications involving tychastic differential equations.</description><subject>Applied mathematics</subject><subject>Control moment gyroscopes</subject><subject>Control systems</subject><subject>Differential equations</subject><subject>Dynamical systems</subject><subject>Ground tests</subject><subject>Mathematical functions</subject><subject>Nonlinear dynamics</subject><subject>Nonlinear systems</subject><subject>Optimal control</subject><subject>Optimization</subject><subject>Parameter uncertainty</subject><subject>Searching</subject><subject>Spacecraft</subject><subject>Stieltjes integral</subject><issn>0731-5090</issn><issn>1533-3884</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><recordid>eNp9kL9OwzAQhy0EEqUw8AaRWGBIuYv_ZkQFCqhSEaWz5USOlCqxi-0O3XgH3pAnIaidGJhu-H26-91HyCXCpODIbnEyAwAO_IiMkFOaU6XYMRmBpJhzKOGUnMW4BkAqUI7Iy1tre-Pc9-fXMrW2S2sbs8Umtb3psql3Kfguew2-6mwfs8aHbOVqG5JpXXa_c6Zv62y5i2lIz8lJY7poLw5zTFaPD-_Tp3y-mD1P7-Z5TTlNuTBCFLyqLDaSsgKQVcyiBQWM16BqBVwWFA0AKxthKoENlkyI4RHLBS_omFzv926C_9jamHTfxtp2nXHWb6NGCaWkUDA-oFd_0LXfBje00wUrmcLhiPqPQqEkSi4kDNTNnqqDjzHYRm_CYCnsNIL-da9RH9zTH8EWc4E</recordid><startdate>20150701</startdate><enddate>20150701</enddate><creator>Ross, I Michael</creator><creator>Proulx, Ronald J</creator><creator>Karpenko, Mark</creator><creator>Gong, Qi</creator><general>American Institute of Aeronautics and Astronautics</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>H8D</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20150701</creationdate><title>Riemann–Stieltjes Optimal Control Problems for Uncertain Dynamic Systems</title><author>Ross, I Michael ; Proulx, Ronald J ; Karpenko, Mark ; Gong, Qi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c353t-6a6625bbe1f7342014b4e1e08045c08c8057231a0049f6ab61f19466388e56523</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Applied mathematics</topic><topic>Control moment gyroscopes</topic><topic>Control systems</topic><topic>Differential equations</topic><topic>Dynamical systems</topic><topic>Ground tests</topic><topic>Mathematical functions</topic><topic>Nonlinear dynamics</topic><topic>Nonlinear systems</topic><topic>Optimal control</topic><topic>Optimization</topic><topic>Parameter uncertainty</topic><topic>Searching</topic><topic>Spacecraft</topic><topic>Stieltjes integral</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ross, I Michael</creatorcontrib><creatorcontrib>Proulx, Ronald J</creatorcontrib><creatorcontrib>Karpenko, Mark</creatorcontrib><creatorcontrib>Gong, Qi</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Journal of guidance, control, and dynamics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ross, I Michael</au><au>Proulx, Ronald J</au><au>Karpenko, Mark</au><au>Gong, Qi</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Riemann–Stieltjes Optimal Control Problems for Uncertain Dynamic Systems</atitle><jtitle>Journal of guidance, control, and dynamics</jtitle><date>2015-07-01</date><risdate>2015</risdate><volume>38</volume><issue>7</issue><spage>1251</spage><epage>1263</epage><pages>1251-1263</pages><issn>0731-5090</issn><eissn>1533-3884</eissn><abstract>Motivated by uncertain parameters in nonlinear dynamic systems, we define a nonclassical optimal control problem where the cost functional is given by a Riemann-Stieltjes "functional of a functional." Using the properties of Riemann-Stieltjes sums, a minimum principle is generated from the limit of a semidiscretization. The optimal control minimizes a Riemann-Stieltjes integral of the Pontryagin Hamiltonian. The challenges associated with addressing the noncommutative operations of integration and minimization are addressed via cubature techniques leading to the concept of hyper-pseudospectral points. These ideas are then applied to address the practical uncertainties in control moment gyroscopes that drive an agile spacecraft. Ground test results conducted at Honeywell demonstrate the new principles. The Riemann-Stieltjes optimal control problem is a generalization of the unscented optimal control problem. It can be connected to many independently developed ideas across several disciplines: search theory, viability theory, quantum control and many other applications involving tychastic differential equations.</abstract><cop>Reston</cop><pub>American Institute of Aeronautics and Astronautics</pub><doi>10.2514/1.G000505</doi><tpages>13</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0731-5090
ispartof Journal of guidance, control, and dynamics, 2015-07, Vol.38 (7), p.1251-1263
issn 0731-5090
1533-3884
language eng
recordid cdi_proquest_miscellaneous_1709730245
source Alma/SFX Local Collection
subjects Applied mathematics
Control moment gyroscopes
Control systems
Differential equations
Dynamical systems
Ground tests
Mathematical functions
Nonlinear dynamics
Nonlinear systems
Optimal control
Optimization
Parameter uncertainty
Searching
Spacecraft
Stieltjes integral
title Riemann–Stieltjes Optimal Control Problems for Uncertain Dynamic Systems
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-28T18%3A08%3A35IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Riemann%E2%80%93Stieltjes%20Optimal%20Control%20Problems%20for%20Uncertain%20Dynamic%20Systems&rft.jtitle=Journal%20of%20guidance,%20control,%20and%20dynamics&rft.au=Ross,%20I%20Michael&rft.date=2015-07-01&rft.volume=38&rft.issue=7&rft.spage=1251&rft.epage=1263&rft.pages=1251-1263&rft.issn=0731-5090&rft.eissn=1533-3884&rft_id=info:doi/10.2514/1.G000505&rft_dat=%3Cproquest_cross%3E3710623511%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1687175670&rft_id=info:pmid/&rfr_iscdi=true