Convexity and Solvability for Compactly Supported Radial Basis Functions with Different Shapes
It is known that interpolation with radial basis functions of the same shape can guarantee a nonsingular interpolation matrix, whereas little was known when one uses various shapes. In this paper, we prove that functions from a class of compactly supported radial basis functions are convex on a cert...
Gespeichert in:
Veröffentlicht in: | Journal of scientific computing 2015-06, Vol.63 (3), p.862-884 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 884 |
---|---|
container_issue | 3 |
container_start_page | 862 |
container_title | Journal of scientific computing |
container_volume | 63 |
creator | Zhu, Shengxin Wathen, Andrew J. |
description | It is known that interpolation with radial basis functions of the same shape can guarantee a nonsingular interpolation matrix, whereas little was known when one uses various shapes. In this paper, we prove that functions from a class of compactly supported radial basis functions are convex on a certain region; based on this local convexity and other local geometrical properties of the interpolation points, we construct a sufficient condition which guarantees diagonally dominant interpolation matrices for radial basis functions interpolation with different shapes. The proof is constructive and can be used to design algorithms directly. Numerical examples show that the scheme has a low accuracy but can be implemented efficiently. It can be used for inaccurate models where efficiency is more desirable. Large scale 3D implicit surface reconstruction problems are used to demonstrate the utility and reasonable results can be obtained efficiently. |
doi_str_mv | 10.1007/s10915-014-9919-9 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1709726904</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1709726904</sourcerecordid><originalsourceid>FETCH-LOGICAL-c419t-258bb64b2abe0090d706a5d3cbe7db0d816f428a7c9708f71ed1c745f05701d63</originalsourceid><addsrcrecordid>eNp1kE1LxDAURYMoOI7-AHcBN26q76UfaZY6OioIgqNbQ9qkToZOU5N2dP69LSMIgqvHg3Mvl0PIKcIFAvDLgCAwjQCTSAgUkdgjE0x5HPFM4D6ZQJ6nEU94ckiOQlgBgMgFm5C3mWs25st2W6oaTReu3qjC1uNfOU9nbt2qsqu3dNG3rfOd0fRZaatqeq2CDXTeN2VnXRPop-2W9MZWlfGm6ehiqVoTjslBpepgTn7ulLzOb19m99Hj093D7OoxKhMUXcTSvCiypGCqMMMy0Bwyleq4LAzXBegcsyphueKl4JBXHI3GkidpBSkH1Fk8Jee73ta7j96ETq5tKE1dq8a4PkjkIDjLBCQDevYHXbneN8M6yQTmMTIWjxTuqNK7ELypZOvtWvmtRJCjcbkzLgfjcjQuxZBhu0wY2Obd-N_m_0PfZ3-DsA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2918312234</pqid></control><display><type>article</type><title>Convexity and Solvability for Compactly Supported Radial Basis Functions with Different Shapes</title><source>SpringerLink Journals</source><source>ProQuest Central</source><creator>Zhu, Shengxin ; Wathen, Andrew J.</creator><creatorcontrib>Zhu, Shengxin ; Wathen, Andrew J.</creatorcontrib><description>It is known that interpolation with radial basis functions of the same shape can guarantee a nonsingular interpolation matrix, whereas little was known when one uses various shapes. In this paper, we prove that functions from a class of compactly supported radial basis functions are convex on a certain region; based on this local convexity and other local geometrical properties of the interpolation points, we construct a sufficient condition which guarantees diagonally dominant interpolation matrices for radial basis functions interpolation with different shapes. The proof is constructive and can be used to design algorithms directly. Numerical examples show that the scheme has a low accuracy but can be implemented efficiently. It can be used for inaccurate models where efficiency is more desirable. Large scale 3D implicit surface reconstruction problems are used to demonstrate the utility and reasonable results can be obtained efficiently.</description><identifier>ISSN: 0885-7474</identifier><identifier>EISSN: 1573-7691</identifier><identifier>DOI: 10.1007/s10915-014-9919-9</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Algorithms ; Approximation ; CAD ; Computational Mathematics and Numerical Analysis ; Computer aided design ; Construction ; Convexity ; Fourier transforms ; Guarantees ; Interpolation ; Mathematical analysis ; Mathematical and Computational Engineering ; Mathematical and Computational Physics ; Mathematical models ; Mathematics ; Mathematics and Statistics ; Partial differential equations ; Radial basis function ; Theoretical ; Three dimensional ; Utilities</subject><ispartof>Journal of scientific computing, 2015-06, Vol.63 (3), p.862-884</ispartof><rights>Springer Science+Business Media New York 2014</rights><rights>Springer Science+Business Media New York 2014.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c419t-258bb64b2abe0090d706a5d3cbe7db0d816f428a7c9708f71ed1c745f05701d63</citedby><cites>FETCH-LOGICAL-c419t-258bb64b2abe0090d706a5d3cbe7db0d816f428a7c9708f71ed1c745f05701d63</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10915-014-9919-9$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2918312234?pq-origsite=primo$$EHTML$$P50$$Gproquest$$H</linktohtml><link.rule.ids>314,776,780,21367,27901,27902,33721,33722,41464,42533,43781,51294</link.rule.ids></links><search><creatorcontrib>Zhu, Shengxin</creatorcontrib><creatorcontrib>Wathen, Andrew J.</creatorcontrib><title>Convexity and Solvability for Compactly Supported Radial Basis Functions with Different Shapes</title><title>Journal of scientific computing</title><addtitle>J Sci Comput</addtitle><description>It is known that interpolation with radial basis functions of the same shape can guarantee a nonsingular interpolation matrix, whereas little was known when one uses various shapes. In this paper, we prove that functions from a class of compactly supported radial basis functions are convex on a certain region; based on this local convexity and other local geometrical properties of the interpolation points, we construct a sufficient condition which guarantees diagonally dominant interpolation matrices for radial basis functions interpolation with different shapes. The proof is constructive and can be used to design algorithms directly. Numerical examples show that the scheme has a low accuracy but can be implemented efficiently. It can be used for inaccurate models where efficiency is more desirable. Large scale 3D implicit surface reconstruction problems are used to demonstrate the utility and reasonable results can be obtained efficiently.</description><subject>Algorithms</subject><subject>Approximation</subject><subject>CAD</subject><subject>Computational Mathematics and Numerical Analysis</subject><subject>Computer aided design</subject><subject>Construction</subject><subject>Convexity</subject><subject>Fourier transforms</subject><subject>Guarantees</subject><subject>Interpolation</subject><subject>Mathematical analysis</subject><subject>Mathematical and Computational Engineering</subject><subject>Mathematical and Computational Physics</subject><subject>Mathematical models</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Partial differential equations</subject><subject>Radial basis function</subject><subject>Theoretical</subject><subject>Three dimensional</subject><subject>Utilities</subject><issn>0885-7474</issn><issn>1573-7691</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNp1kE1LxDAURYMoOI7-AHcBN26q76UfaZY6OioIgqNbQ9qkToZOU5N2dP69LSMIgqvHg3Mvl0PIKcIFAvDLgCAwjQCTSAgUkdgjE0x5HPFM4D6ZQJ6nEU94ckiOQlgBgMgFm5C3mWs25st2W6oaTReu3qjC1uNfOU9nbt2qsqu3dNG3rfOd0fRZaatqeq2CDXTeN2VnXRPop-2W9MZWlfGm6ehiqVoTjslBpepgTn7ulLzOb19m99Hj093D7OoxKhMUXcTSvCiypGCqMMMy0Bwyleq4LAzXBegcsyphueKl4JBXHI3GkidpBSkH1Fk8Jee73ta7j96ETq5tKE1dq8a4PkjkIDjLBCQDevYHXbneN8M6yQTmMTIWjxTuqNK7ELypZOvtWvmtRJCjcbkzLgfjcjQuxZBhu0wY2Obd-N_m_0PfZ3-DsA</recordid><startdate>20150601</startdate><enddate>20150601</enddate><creator>Zhu, Shengxin</creator><creator>Wathen, Andrew J.</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>P5Z</scope><scope>P62</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>7SC</scope><scope>8FD</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20150601</creationdate><title>Convexity and Solvability for Compactly Supported Radial Basis Functions with Different Shapes</title><author>Zhu, Shengxin ; Wathen, Andrew J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c419t-258bb64b2abe0090d706a5d3cbe7db0d816f428a7c9708f71ed1c745f05701d63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Algorithms</topic><topic>Approximation</topic><topic>CAD</topic><topic>Computational Mathematics and Numerical Analysis</topic><topic>Computer aided design</topic><topic>Construction</topic><topic>Convexity</topic><topic>Fourier transforms</topic><topic>Guarantees</topic><topic>Interpolation</topic><topic>Mathematical analysis</topic><topic>Mathematical and Computational Engineering</topic><topic>Mathematical and Computational Physics</topic><topic>Mathematical models</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Partial differential equations</topic><topic>Radial basis function</topic><topic>Theoretical</topic><topic>Three dimensional</topic><topic>Utilities</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhu, Shengxin</creatorcontrib><creatorcontrib>Wathen, Andrew J.</creatorcontrib><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Journal of scientific computing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhu, Shengxin</au><au>Wathen, Andrew J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Convexity and Solvability for Compactly Supported Radial Basis Functions with Different Shapes</atitle><jtitle>Journal of scientific computing</jtitle><stitle>J Sci Comput</stitle><date>2015-06-01</date><risdate>2015</risdate><volume>63</volume><issue>3</issue><spage>862</spage><epage>884</epage><pages>862-884</pages><issn>0885-7474</issn><eissn>1573-7691</eissn><abstract>It is known that interpolation with radial basis functions of the same shape can guarantee a nonsingular interpolation matrix, whereas little was known when one uses various shapes. In this paper, we prove that functions from a class of compactly supported radial basis functions are convex on a certain region; based on this local convexity and other local geometrical properties of the interpolation points, we construct a sufficient condition which guarantees diagonally dominant interpolation matrices for radial basis functions interpolation with different shapes. The proof is constructive and can be used to design algorithms directly. Numerical examples show that the scheme has a low accuracy but can be implemented efficiently. It can be used for inaccurate models where efficiency is more desirable. Large scale 3D implicit surface reconstruction problems are used to demonstrate the utility and reasonable results can be obtained efficiently.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s10915-014-9919-9</doi><tpages>23</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0885-7474 |
ispartof | Journal of scientific computing, 2015-06, Vol.63 (3), p.862-884 |
issn | 0885-7474 1573-7691 |
language | eng |
recordid | cdi_proquest_miscellaneous_1709726904 |
source | SpringerLink Journals; ProQuest Central |
subjects | Algorithms Approximation CAD Computational Mathematics and Numerical Analysis Computer aided design Construction Convexity Fourier transforms Guarantees Interpolation Mathematical analysis Mathematical and Computational Engineering Mathematical and Computational Physics Mathematical models Mathematics Mathematics and Statistics Partial differential equations Radial basis function Theoretical Three dimensional Utilities |
title | Convexity and Solvability for Compactly Supported Radial Basis Functions with Different Shapes |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T15%3A22%3A49IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Convexity%20and%20Solvability%20for%20Compactly%20Supported%20Radial%20Basis%20Functions%20with%20Different%20Shapes&rft.jtitle=Journal%20of%20scientific%20computing&rft.au=Zhu,%20Shengxin&rft.date=2015-06-01&rft.volume=63&rft.issue=3&rft.spage=862&rft.epage=884&rft.pages=862-884&rft.issn=0885-7474&rft.eissn=1573-7691&rft_id=info:doi/10.1007/s10915-014-9919-9&rft_dat=%3Cproquest_cross%3E1709726904%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2918312234&rft_id=info:pmid/&rfr_iscdi=true |