Convexity and Solvability for Compactly Supported Radial Basis Functions with Different Shapes

It is known that interpolation with radial basis functions of the same shape can guarantee a nonsingular interpolation matrix, whereas little was known when one uses various shapes. In this paper, we prove that functions from a class of compactly supported radial basis functions are convex on a cert...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of scientific computing 2015-06, Vol.63 (3), p.862-884
Hauptverfasser: Zhu, Shengxin, Wathen, Andrew J.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 884
container_issue 3
container_start_page 862
container_title Journal of scientific computing
container_volume 63
creator Zhu, Shengxin
Wathen, Andrew J.
description It is known that interpolation with radial basis functions of the same shape can guarantee a nonsingular interpolation matrix, whereas little was known when one uses various shapes. In this paper, we prove that functions from a class of compactly supported radial basis functions are convex on a certain region; based on this local convexity and other local geometrical properties of the interpolation points, we construct a sufficient condition which guarantees diagonally dominant interpolation matrices for radial basis functions interpolation with different shapes. The proof is constructive and can be used to design algorithms directly. Numerical examples show that the scheme has a low accuracy but can be implemented efficiently. It can be used for inaccurate models where efficiency is more desirable. Large scale 3D implicit surface reconstruction problems are used to demonstrate the utility and reasonable results can be obtained efficiently.
doi_str_mv 10.1007/s10915-014-9919-9
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1709726904</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1709726904</sourcerecordid><originalsourceid>FETCH-LOGICAL-c419t-258bb64b2abe0090d706a5d3cbe7db0d816f428a7c9708f71ed1c745f05701d63</originalsourceid><addsrcrecordid>eNp1kE1LxDAURYMoOI7-AHcBN26q76UfaZY6OioIgqNbQ9qkToZOU5N2dP69LSMIgqvHg3Mvl0PIKcIFAvDLgCAwjQCTSAgUkdgjE0x5HPFM4D6ZQJ6nEU94ckiOQlgBgMgFm5C3mWs25st2W6oaTReu3qjC1uNfOU9nbt2qsqu3dNG3rfOd0fRZaatqeq2CDXTeN2VnXRPop-2W9MZWlfGm6ehiqVoTjslBpepgTn7ulLzOb19m99Hj093D7OoxKhMUXcTSvCiypGCqMMMy0Bwyleq4LAzXBegcsyphueKl4JBXHI3GkidpBSkH1Fk8Jee73ta7j96ETq5tKE1dq8a4PkjkIDjLBCQDevYHXbneN8M6yQTmMTIWjxTuqNK7ELypZOvtWvmtRJCjcbkzLgfjcjQuxZBhu0wY2Obd-N_m_0PfZ3-DsA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2918312234</pqid></control><display><type>article</type><title>Convexity and Solvability for Compactly Supported Radial Basis Functions with Different Shapes</title><source>SpringerLink Journals</source><source>ProQuest Central</source><creator>Zhu, Shengxin ; Wathen, Andrew J.</creator><creatorcontrib>Zhu, Shengxin ; Wathen, Andrew J.</creatorcontrib><description>It is known that interpolation with radial basis functions of the same shape can guarantee a nonsingular interpolation matrix, whereas little was known when one uses various shapes. In this paper, we prove that functions from a class of compactly supported radial basis functions are convex on a certain region; based on this local convexity and other local geometrical properties of the interpolation points, we construct a sufficient condition which guarantees diagonally dominant interpolation matrices for radial basis functions interpolation with different shapes. The proof is constructive and can be used to design algorithms directly. Numerical examples show that the scheme has a low accuracy but can be implemented efficiently. It can be used for inaccurate models where efficiency is more desirable. Large scale 3D implicit surface reconstruction problems are used to demonstrate the utility and reasonable results can be obtained efficiently.</description><identifier>ISSN: 0885-7474</identifier><identifier>EISSN: 1573-7691</identifier><identifier>DOI: 10.1007/s10915-014-9919-9</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Algorithms ; Approximation ; CAD ; Computational Mathematics and Numerical Analysis ; Computer aided design ; Construction ; Convexity ; Fourier transforms ; Guarantees ; Interpolation ; Mathematical analysis ; Mathematical and Computational Engineering ; Mathematical and Computational Physics ; Mathematical models ; Mathematics ; Mathematics and Statistics ; Partial differential equations ; Radial basis function ; Theoretical ; Three dimensional ; Utilities</subject><ispartof>Journal of scientific computing, 2015-06, Vol.63 (3), p.862-884</ispartof><rights>Springer Science+Business Media New York 2014</rights><rights>Springer Science+Business Media New York 2014.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c419t-258bb64b2abe0090d706a5d3cbe7db0d816f428a7c9708f71ed1c745f05701d63</citedby><cites>FETCH-LOGICAL-c419t-258bb64b2abe0090d706a5d3cbe7db0d816f428a7c9708f71ed1c745f05701d63</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10915-014-9919-9$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2918312234?pq-origsite=primo$$EHTML$$P50$$Gproquest$$H</linktohtml><link.rule.ids>314,776,780,21367,27901,27902,33721,33722,41464,42533,43781,51294</link.rule.ids></links><search><creatorcontrib>Zhu, Shengxin</creatorcontrib><creatorcontrib>Wathen, Andrew J.</creatorcontrib><title>Convexity and Solvability for Compactly Supported Radial Basis Functions with Different Shapes</title><title>Journal of scientific computing</title><addtitle>J Sci Comput</addtitle><description>It is known that interpolation with radial basis functions of the same shape can guarantee a nonsingular interpolation matrix, whereas little was known when one uses various shapes. In this paper, we prove that functions from a class of compactly supported radial basis functions are convex on a certain region; based on this local convexity and other local geometrical properties of the interpolation points, we construct a sufficient condition which guarantees diagonally dominant interpolation matrices for radial basis functions interpolation with different shapes. The proof is constructive and can be used to design algorithms directly. Numerical examples show that the scheme has a low accuracy but can be implemented efficiently. It can be used for inaccurate models where efficiency is more desirable. Large scale 3D implicit surface reconstruction problems are used to demonstrate the utility and reasonable results can be obtained efficiently.</description><subject>Algorithms</subject><subject>Approximation</subject><subject>CAD</subject><subject>Computational Mathematics and Numerical Analysis</subject><subject>Computer aided design</subject><subject>Construction</subject><subject>Convexity</subject><subject>Fourier transforms</subject><subject>Guarantees</subject><subject>Interpolation</subject><subject>Mathematical analysis</subject><subject>Mathematical and Computational Engineering</subject><subject>Mathematical and Computational Physics</subject><subject>Mathematical models</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Partial differential equations</subject><subject>Radial basis function</subject><subject>Theoretical</subject><subject>Three dimensional</subject><subject>Utilities</subject><issn>0885-7474</issn><issn>1573-7691</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNp1kE1LxDAURYMoOI7-AHcBN26q76UfaZY6OioIgqNbQ9qkToZOU5N2dP69LSMIgqvHg3Mvl0PIKcIFAvDLgCAwjQCTSAgUkdgjE0x5HPFM4D6ZQJ6nEU94ckiOQlgBgMgFm5C3mWs25st2W6oaTReu3qjC1uNfOU9nbt2qsqu3dNG3rfOd0fRZaatqeq2CDXTeN2VnXRPop-2W9MZWlfGm6ehiqVoTjslBpepgTn7ulLzOb19m99Hj093D7OoxKhMUXcTSvCiypGCqMMMy0Bwyleq4LAzXBegcsyphueKl4JBXHI3GkidpBSkH1Fk8Jee73ta7j96ETq5tKE1dq8a4PkjkIDjLBCQDevYHXbneN8M6yQTmMTIWjxTuqNK7ELypZOvtWvmtRJCjcbkzLgfjcjQuxZBhu0wY2Obd-N_m_0PfZ3-DsA</recordid><startdate>20150601</startdate><enddate>20150601</enddate><creator>Zhu, Shengxin</creator><creator>Wathen, Andrew J.</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>P5Z</scope><scope>P62</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>7SC</scope><scope>8FD</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20150601</creationdate><title>Convexity and Solvability for Compactly Supported Radial Basis Functions with Different Shapes</title><author>Zhu, Shengxin ; Wathen, Andrew J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c419t-258bb64b2abe0090d706a5d3cbe7db0d816f428a7c9708f71ed1c745f05701d63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Algorithms</topic><topic>Approximation</topic><topic>CAD</topic><topic>Computational Mathematics and Numerical Analysis</topic><topic>Computer aided design</topic><topic>Construction</topic><topic>Convexity</topic><topic>Fourier transforms</topic><topic>Guarantees</topic><topic>Interpolation</topic><topic>Mathematical analysis</topic><topic>Mathematical and Computational Engineering</topic><topic>Mathematical and Computational Physics</topic><topic>Mathematical models</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Partial differential equations</topic><topic>Radial basis function</topic><topic>Theoretical</topic><topic>Three dimensional</topic><topic>Utilities</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhu, Shengxin</creatorcontrib><creatorcontrib>Wathen, Andrew J.</creatorcontrib><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Journal of scientific computing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhu, Shengxin</au><au>Wathen, Andrew J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Convexity and Solvability for Compactly Supported Radial Basis Functions with Different Shapes</atitle><jtitle>Journal of scientific computing</jtitle><stitle>J Sci Comput</stitle><date>2015-06-01</date><risdate>2015</risdate><volume>63</volume><issue>3</issue><spage>862</spage><epage>884</epage><pages>862-884</pages><issn>0885-7474</issn><eissn>1573-7691</eissn><abstract>It is known that interpolation with radial basis functions of the same shape can guarantee a nonsingular interpolation matrix, whereas little was known when one uses various shapes. In this paper, we prove that functions from a class of compactly supported radial basis functions are convex on a certain region; based on this local convexity and other local geometrical properties of the interpolation points, we construct a sufficient condition which guarantees diagonally dominant interpolation matrices for radial basis functions interpolation with different shapes. The proof is constructive and can be used to design algorithms directly. Numerical examples show that the scheme has a low accuracy but can be implemented efficiently. It can be used for inaccurate models where efficiency is more desirable. Large scale 3D implicit surface reconstruction problems are used to demonstrate the utility and reasonable results can be obtained efficiently.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s10915-014-9919-9</doi><tpages>23</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0885-7474
ispartof Journal of scientific computing, 2015-06, Vol.63 (3), p.862-884
issn 0885-7474
1573-7691
language eng
recordid cdi_proquest_miscellaneous_1709726904
source SpringerLink Journals; ProQuest Central
subjects Algorithms
Approximation
CAD
Computational Mathematics and Numerical Analysis
Computer aided design
Construction
Convexity
Fourier transforms
Guarantees
Interpolation
Mathematical analysis
Mathematical and Computational Engineering
Mathematical and Computational Physics
Mathematical models
Mathematics
Mathematics and Statistics
Partial differential equations
Radial basis function
Theoretical
Three dimensional
Utilities
title Convexity and Solvability for Compactly Supported Radial Basis Functions with Different Shapes
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T15%3A22%3A49IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Convexity%20and%20Solvability%20for%20Compactly%20Supported%20Radial%20Basis%20Functions%20with%20Different%20Shapes&rft.jtitle=Journal%20of%20scientific%20computing&rft.au=Zhu,%20Shengxin&rft.date=2015-06-01&rft.volume=63&rft.issue=3&rft.spage=862&rft.epage=884&rft.pages=862-884&rft.issn=0885-7474&rft.eissn=1573-7691&rft_id=info:doi/10.1007/s10915-014-9919-9&rft_dat=%3Cproquest_cross%3E1709726904%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2918312234&rft_id=info:pmid/&rfr_iscdi=true