Dimensional reduction and its breakdown in the three-dimensional long-range random-field Ising model

We investigate dimensional reduction, the property that the critical behavior of a system in the presence of quenched disorder in dimension d is the same as that of its pure counterpart in d - 2, and its breakdown in the case of the random-field Ising model in which both the interactions and the cor...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physical review. B, Condensed matter and materials physics Condensed matter and materials physics, 2013-07, Vol.88 (1), Article 014204
Hauptverfasser: Baczyk, Maxime, Tissier, Matthieu, Tarjus, Gilles, Sakamoto, Yoshinori
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 1
container_start_page
container_title Physical review. B, Condensed matter and materials physics
container_volume 88
creator Baczyk, Maxime
Tissier, Matthieu
Tarjus, Gilles
Sakamoto, Yoshinori
description We investigate dimensional reduction, the property that the critical behavior of a system in the presence of quenched disorder in dimension d is the same as that of its pure counterpart in d - 2, and its breakdown in the case of the random-field Ising model in which both the interactions and the correlations of the disorder are long ranged, i.e., power-law decaying. To some extent the power-law exponents play the role of spatial dimension in a short-range model, which allows us to probe the theoretically predicted existence of a nontrivial critical value separating a region where dimensional reduction holds from one where it is broken, while still considering the physical dimension d = 3. By extending our recently developed approach based on a nonperturbative functional renormalization group combined with a supersymmetric formalism, we find that such a critical value indeed exists, provided one chooses a specific relation between the decay exponents of the interactions and of the disorder correlations. This transition from dimensional reduction to its breakdown should therefore be observable in simulations and numerical analyses, if not experimentally.
doi_str_mv 10.1103/PhysRevB.88.014204
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1709726627</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1709726627</sourcerecordid><originalsourceid>FETCH-LOGICAL-c324t-4927258cf5aa2189d81a35874064868e3d731707d14a969e990335625b9d0fd3</originalsourceid><addsrcrecordid>eNpNkLtOAzEQRS0EEs8foHJJ4-Dnrl1CeEVCAqEUdJaznk0Mu3awN6D8PYsCEsXM3OLcKQ5C54xOGKPi8nm1LS_weT3RekKZ5FTuoSOmFCVcqNf9MVOjCWWcHaLjUt7oCBnJj5C_CT3EElJ0Hc7gN80wZuyix2EoeJHBvfv0FXGIeFjBOBmA-H-lLsUlyS4uAY_bp560ATqPZyXEJe6Th-4UHbSuK3D2e0_Q_O52Pn0gj0_3s-nVI2kElwORhtdc6aZVznGmjdfMCaVrSSupKw3C14LVtPZMOlMZMIYKoSquFsbT1osTdLF7u87pYwNlsH0oDXSdi5A2xY5dU_Oq4vWI8h3a5FRKhtauc-hd3lpG7Y9R-2fUam13RsU3LTJrQA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1709726627</pqid></control><display><type>article</type><title>Dimensional reduction and its breakdown in the three-dimensional long-range random-field Ising model</title><source>American Physical Society Journals</source><creator>Baczyk, Maxime ; Tissier, Matthieu ; Tarjus, Gilles ; Sakamoto, Yoshinori</creator><creatorcontrib>Baczyk, Maxime ; Tissier, Matthieu ; Tarjus, Gilles ; Sakamoto, Yoshinori</creatorcontrib><description>We investigate dimensional reduction, the property that the critical behavior of a system in the presence of quenched disorder in dimension d is the same as that of its pure counterpart in d - 2, and its breakdown in the case of the random-field Ising model in which both the interactions and the correlations of the disorder are long ranged, i.e., power-law decaying. To some extent the power-law exponents play the role of spatial dimension in a short-range model, which allows us to probe the theoretically predicted existence of a nontrivial critical value separating a region where dimensional reduction holds from one where it is broken, while still considering the physical dimension d = 3. By extending our recently developed approach based on a nonperturbative functional renormalization group combined with a supersymmetric formalism, we find that such a critical value indeed exists, provided one chooses a specific relation between the decay exponents of the interactions and of the disorder correlations. This transition from dimensional reduction to its breakdown should therefore be observable in simulations and numerical analyses, if not experimentally.</description><identifier>ISSN: 1098-0121</identifier><identifier>EISSN: 1550-235X</identifier><identifier>DOI: 10.1103/PhysRevB.88.014204</identifier><language>eng</language><subject>Breakdown ; Condensed matter ; Correlation ; Decay ; Disorders ; Exponents ; Mathematical models ; Reduction</subject><ispartof>Physical review. B, Condensed matter and materials physics, 2013-07, Vol.88 (1), Article 014204</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c324t-4927258cf5aa2189d81a35874064868e3d731707d14a969e990335625b9d0fd3</citedby><cites>FETCH-LOGICAL-c324t-4927258cf5aa2189d81a35874064868e3d731707d14a969e990335625b9d0fd3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,2876,2877,27924,27925</link.rule.ids></links><search><creatorcontrib>Baczyk, Maxime</creatorcontrib><creatorcontrib>Tissier, Matthieu</creatorcontrib><creatorcontrib>Tarjus, Gilles</creatorcontrib><creatorcontrib>Sakamoto, Yoshinori</creatorcontrib><title>Dimensional reduction and its breakdown in the three-dimensional long-range random-field Ising model</title><title>Physical review. B, Condensed matter and materials physics</title><description>We investigate dimensional reduction, the property that the critical behavior of a system in the presence of quenched disorder in dimension d is the same as that of its pure counterpart in d - 2, and its breakdown in the case of the random-field Ising model in which both the interactions and the correlations of the disorder are long ranged, i.e., power-law decaying. To some extent the power-law exponents play the role of spatial dimension in a short-range model, which allows us to probe the theoretically predicted existence of a nontrivial critical value separating a region where dimensional reduction holds from one where it is broken, while still considering the physical dimension d = 3. By extending our recently developed approach based on a nonperturbative functional renormalization group combined with a supersymmetric formalism, we find that such a critical value indeed exists, provided one chooses a specific relation between the decay exponents of the interactions and of the disorder correlations. This transition from dimensional reduction to its breakdown should therefore be observable in simulations and numerical analyses, if not experimentally.</description><subject>Breakdown</subject><subject>Condensed matter</subject><subject>Correlation</subject><subject>Decay</subject><subject>Disorders</subject><subject>Exponents</subject><subject>Mathematical models</subject><subject>Reduction</subject><issn>1098-0121</issn><issn>1550-235X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><recordid>eNpNkLtOAzEQRS0EEs8foHJJ4-Dnrl1CeEVCAqEUdJaznk0Mu3awN6D8PYsCEsXM3OLcKQ5C54xOGKPi8nm1LS_weT3RekKZ5FTuoSOmFCVcqNf9MVOjCWWcHaLjUt7oCBnJj5C_CT3EElJ0Hc7gN80wZuyix2EoeJHBvfv0FXGIeFjBOBmA-H-lLsUlyS4uAY_bp560ATqPZyXEJe6Th-4UHbSuK3D2e0_Q_O52Pn0gj0_3s-nVI2kElwORhtdc6aZVznGmjdfMCaVrSSupKw3C14LVtPZMOlMZMIYKoSquFsbT1osTdLF7u87pYwNlsH0oDXSdi5A2xY5dU_Oq4vWI8h3a5FRKhtauc-hd3lpG7Y9R-2fUam13RsU3LTJrQA</recordid><startdate>20130722</startdate><enddate>20130722</enddate><creator>Baczyk, Maxime</creator><creator>Tissier, Matthieu</creator><creator>Tarjus, Gilles</creator><creator>Sakamoto, Yoshinori</creator><scope>AAYXX</scope><scope>CITATION</scope><scope>7U5</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope></search><sort><creationdate>20130722</creationdate><title>Dimensional reduction and its breakdown in the three-dimensional long-range random-field Ising model</title><author>Baczyk, Maxime ; Tissier, Matthieu ; Tarjus, Gilles ; Sakamoto, Yoshinori</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c324t-4927258cf5aa2189d81a35874064868e3d731707d14a969e990335625b9d0fd3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Breakdown</topic><topic>Condensed matter</topic><topic>Correlation</topic><topic>Decay</topic><topic>Disorders</topic><topic>Exponents</topic><topic>Mathematical models</topic><topic>Reduction</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Baczyk, Maxime</creatorcontrib><creatorcontrib>Tissier, Matthieu</creatorcontrib><creatorcontrib>Tarjus, Gilles</creatorcontrib><creatorcontrib>Sakamoto, Yoshinori</creatorcontrib><collection>CrossRef</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Physical review. B, Condensed matter and materials physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Baczyk, Maxime</au><au>Tissier, Matthieu</au><au>Tarjus, Gilles</au><au>Sakamoto, Yoshinori</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Dimensional reduction and its breakdown in the three-dimensional long-range random-field Ising model</atitle><jtitle>Physical review. B, Condensed matter and materials physics</jtitle><date>2013-07-22</date><risdate>2013</risdate><volume>88</volume><issue>1</issue><artnum>014204</artnum><issn>1098-0121</issn><eissn>1550-235X</eissn><abstract>We investigate dimensional reduction, the property that the critical behavior of a system in the presence of quenched disorder in dimension d is the same as that of its pure counterpart in d - 2, and its breakdown in the case of the random-field Ising model in which both the interactions and the correlations of the disorder are long ranged, i.e., power-law decaying. To some extent the power-law exponents play the role of spatial dimension in a short-range model, which allows us to probe the theoretically predicted existence of a nontrivial critical value separating a region where dimensional reduction holds from one where it is broken, while still considering the physical dimension d = 3. By extending our recently developed approach based on a nonperturbative functional renormalization group combined with a supersymmetric formalism, we find that such a critical value indeed exists, provided one chooses a specific relation between the decay exponents of the interactions and of the disorder correlations. This transition from dimensional reduction to its breakdown should therefore be observable in simulations and numerical analyses, if not experimentally.</abstract><doi>10.1103/PhysRevB.88.014204</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1098-0121
ispartof Physical review. B, Condensed matter and materials physics, 2013-07, Vol.88 (1), Article 014204
issn 1098-0121
1550-235X
language eng
recordid cdi_proquest_miscellaneous_1709726627
source American Physical Society Journals
subjects Breakdown
Condensed matter
Correlation
Decay
Disorders
Exponents
Mathematical models
Reduction
title Dimensional reduction and its breakdown in the three-dimensional long-range random-field Ising model
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-20T12%3A13%3A54IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Dimensional%20reduction%20and%20its%20breakdown%20in%20the%20three-dimensional%20long-range%20random-field%20Ising%20model&rft.jtitle=Physical%20review.%20B,%20Condensed%20matter%20and%20materials%20physics&rft.au=Baczyk,%20Maxime&rft.date=2013-07-22&rft.volume=88&rft.issue=1&rft.artnum=014204&rft.issn=1098-0121&rft.eissn=1550-235X&rft_id=info:doi/10.1103/PhysRevB.88.014204&rft_dat=%3Cproquest_cross%3E1709726627%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1709726627&rft_id=info:pmid/&rfr_iscdi=true